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ABSTRACT

Sequential design is a highly active field of research in active learning which provides a general
framework for the design of computer experiments to make the most of a low computational budget. It
has been widely used to generate efficient surrogate models able to replace complex computer codes,
most notably for uncertainty quantification, Bayesian optimization, reliability analysis or model
calibration tasks. In this work, a sequential design strategy is developed for Bayesian inverse problems,
in which a Gaussian process surrogate model serves as an emulator for a costly computer code. The
proposed strategy is based on a goal-oriented I-optimal criterion adapted to the Stepwise Uncertainty
Reduction (SUR) paradigm. In SUR strategies, a new design point is chosen by minimizing the
expectation of an uncertainty metric with respect to the yet unknown new data point. These methods
have attracted increasing interest as they provide an accessible framework for the sequential design
of experiments while including almost-sure convergence for the most-widely used metrics.
In this paper, a weighted integrated mean square prediction error is introduced and serves as a metric
of uncertainty for the newly proposed IP-SUR (Inverse Problem Stepwise Uncertainty Reduction)
sequential design strategy derived from SUR methods. This strategy is shown to be tractable for both
scalar and multi-output Gaussian process surrogate models with continuous sample paths, and comes
with theoretical guarantee for the almost-sure convergence of the metric of uncertainty. The premises
of this work are highlighted on various test cases in which the newly derived strategy is compared to
other naive and sequential designs (D-optimal designs, Bayes risk minimization).

1 Introduction

In the general field of uncertainty quantification, the resolution of ill-posed inverse problems with a Bayesian approach
is a widely used method, which gives access to the posterior distribution of the uncertain inputs from which various
quantities of interest can be calculated for decision making (Stuart, 2010; Kaipio and Somersalo, 2006). However when
the direct models are complex computer codes, such a Bayesian approach is not tractable since the sampling of the
posterior distribution requires a large number of calls to the direct model. To overcome this obstacle, surrogate models
are often introduced to reduce the computational burden of the inverse problem resolution (Frangos et al., 2010). The
quality of the uncertainty prediction is then directly linked to the quality of the surrogate model. In some applications
(Mai et al., 2017), the computational budget implies a scarcity of the numerical data, since they are given by calls of
the direct model. To build the best possible surrogate model, one needs to make sure the numerical data is the most
informative for the given problem at stake and the given computational budget.
This is the premise of sequential design for computer experiments (Santner et al., 2003; Gramacy and Lee, 2009; Sacks
et al., 1989). While space filling design based on Latin Hypercube (Stein, 1987) or minimax distance design (Johnson
et al., 1990) have been widely investigated, they are not suited for the specific problem at stake where the region of
interest only covers a small fraction of the input space. For such cases, criterion-based designs have been introduced
in various domains, such as reliability analysis (Lee and Jung, 2008; Du and Chen, 2002; Agrell and Dahl, 2021;
Azzimonti et al., 2021; Dubourg et al., 2013), Bayesian optimization (Shahriari et al., 2015; Imani and Ghoreishi, 2020),
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contour identification (Ranjan et al., 2008) or more recently in Bayesian calibration (Ezzat et al., 2018; Sürer et al., 2023;
Kennedy and O’Hagan, 2001) or in multi-fidelity surrogate modeling (Stroh et al., 2022). Most common approaches
include criteria based on the maximization of the information gain (Shewry and Wynn, 1987), D-optimal designs based
on the maximization of the predictive covariance determinant (Wang et al., 2006; de Aguiar et al., 1995; Osio and
Amon, 1996; Mitchell, 2000) or on the minimization of a functional of the mean-squared prediction error (MPSE)
(Kleijnen and Beers, 2004). Weighted integrated MPSE optimal designs have been used to improve surrogate models
and outperform traditional LHS sampling (Picheny et al., 2010). In Bayesian inverse problems, sequential design
strategies have been investigated to produce estimators for the inverse problem likelihood (Sinsbeck et al., 2021) or the
Bayesian model evidence (Sinsbeck and Nowak, 2017) to provide insight on model selection. In Li and Marzouk (2014),
the design points for the surrogate model are obtained iteratively from variational posterior distributions designed to
minimize the Kullback-Leibler divergence with the true posterior.
In this paper, a novel sequential design strategy named IP-SUR is introduced for Gaussian process surrogate models
in Bayesian inverse problems. This objective-oriented design based on the Stepwise Uncertainty Reduction (SUR)
paradigm applied to the integrated MPSE is shown to be tractable for GP surrogates, for both scalar and vectorial
outputs. Moreover, it is supported by a theoretical guarantee of almost-sure convergence of the metric of uncertainty,
which is rarely obtained for sequential design strategies. Overall, the sequential design presented in this work is both
accessible and easily implemented, while being grounded on a strong theoretical guarantee.
The following two sections present the fundamentals of Gaussian process regression and Bayesian inverse problems.
Then, the SUR paradigm is applied to the weighted integrated MPSE metric that serves as the metric of uncertainty.
The IP-SUR sequential strategy is applied to several academic and real cases and compared to other designs (naive,
D-optimal, Bayes risk minimization).

2 Bayesian inverse problems

2.1 Inverse problem definition

Consider the following inverse problem. We would like to identify the parameters x ∈ X ⊂ Rp based on the
observations of some quantity y ∈ R. The link between the inputs x and the output y is provided by a direct model
f : X −→ R. When dealing with such inverse problems, one would like to estimate the most likely x∗ associated to one
(N = 1) or several (N > 1) noisy observations of the direct model y = (y(k))1≤k≤N . To obtain a point estimate of x∗
the standard approaches involve least-squares minimization and can include regularization terms (Engl et al., 1996)
such that:

x∗ ∈ argminx∈X

{
N∑

k=1

∥y(k) − f(x)∥2 + λ∥x∥2
}

(1)

where λ ∈ R+ is a regularization parameter and ∥ · ∥ is the standard Euclidean norm.
However most of the inverse problems encountered in real-world applications are said to be ill-posed in the sense of
Hadamard, meaning they do not meet one of the three following criteria:

• The solution of the problem exists.
• The solution is unique.
• The unique solution depends continuously on the observed data.

In this context, two different sets of observations can lead to very different point estimates x∗. The quan-
tification of the underlying uncertainties in the estimation of x is crucial to provide insight on the quality of the
predictions. The Bayesian paradigm is the standard approach for uncertainty quantification in ill-posed inverse problems.

2.2 Bayesian resolution

In the Bayesian paradigm (Dashti and Stuart, 2017; Scales and Tenorio, 2001), the inputs x and the output y are
considered random variables and the goal is to estimate the posterior distribution p(x|y), which is the probability
distribution of the inputs x conditioned by the noisy observations y of the output. Let us assume we have N ≥ 1
observations with independent identically distributed zero-mean Gaussian noise y(k) = f(x) + ε(k) with ε(k) ∼
N
(
0, σ2

m

)
for 1 ≤ k ≤ N , and σ2

m is the variance of the observations. Then, the posterior distribution can be expressed
with Bayes’ theorem as the product of a prior distribution and an analytically tractable likelihood:

p(x|y) ∝ p(x)L(y|x) ∝ p(x) exp

(
−

N∑
k=1

(y(k) − f(x))2

2σ2
m

)
. (2)

2
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The multiplicative constant is often intractable, but the posterior distribution can be sampled with Monte-Carlo Markov
Chain (MCMC) methods to overcome this difficulty.
The prior p(x) is to be chosen by the user directly. It can incorporate expert knowledge or information from other
observations. It can also be taken mostly non-informative (Jeffreys, 1946; Ghosh, 2011; Consonni et al., 2018). This
prior can be interpreted as a regularization term as is done in the least-squares minimization.
The more observations are provided, the less influential the choice of the prior is. In this paper, the choice of the prior
will not be further discussed. In our applications, the number of observations is large enough for the prior to have little
influence. It shall be taken as a uniform distribution on the compact space X ⊂ Rp.
The Bayesian approach as depicted here has two major flaws however. The direct model f is assumed to be known,
and the sampling of the posterior distribution requires a large number of calls to this direct model. For real-world
applications, the direct model is often given by experiments or by complex computer codes. In some cases, an analytical
direct model can be found provided strong model assumptions, but it comes with a systematic bias that needs to be
accounted for. Thus, obtaining the posterior distribution is often too computationally expensive. A way to circumvent
this obstacle is to rely on surrogate models.

2.3 Surrogate models for Bayesian inverse problems

In this work, we consider Gaussian Process (GP) based surrogate models because GPs induce closed form posterior
distributions. Let us introduce briefly some basic concepts on GP surrogates. For simplicity, only scalar GPs are
considered. The method extends to multi-output GP surrogate models such as the Linear Model of Coregionalization
(Bonilla et al., 2007). The extension of the results presented in this paper to multi-output GPs is detailed in appendix C.

Definition 2.1. Let (Ω,F ,P) be a probability space, and consider the index set X ⊂ Rp and the measurable space
(R,B(R)) where B(R) is the Borel σ-algebra of R. A Gaussian process fs is a stochastic process

fs : X × Ω −→ R

(x, ω) 7−→ fs(x, ω),

such that for any finite collection x = (x1, ..., xn) ∈ Xn with n ≥ 1, the random variable fs(x) = (fs(x1), ..., fs(xn))
follows a multivariate normal distribution.

Definition 2.2. The distribution of a Gaussian process is entirely determined by its mean function m : X −→ R and its
positive definite covariance function k : X ×X −→ R. We then denote fs ∼ GP (m(x), k(x, x′)) the GP such that for
any finite collection x = (x1, ..., xn), the random variable fs(x) is Gaussian with mean m(x) = (m(x1), ...,m(xn)) ∈
Rn and covariance matrix K ∈ Rn×n whose elements are Ki,j = k(xi, xj) for 1 ≤ i, j ≤ n.

As such, Gaussian processes can be used to introduce a prior on a functional space. The covariance function defines
the class of random functions represented by the GP prior. Some standard covariance kernels are the RBF kernel and
the Matérn kernels (Rasmussen and Williams, 2006). Depending on the expected properties of the target function
(periodicity, regularity, ...) various classes of covariance kernels can be used. The mean function is more straightforward
and is often set to a constant, though some more advanced approaches exist to improve the performance of the GP
surrogate (Schobi et al., 2015).
GP based surrogate models are widely used as predictor models in uncertainty quantification because they provide
predictive means and variances which are analytically tractable and rely only on matrix products and inversions.

Theorem 2.1. Consider fs ∼ GP (m(x), k(x, x′)) and let x ∈ Xn be a collection of inputs and f ∈ Rn the
corresponding observed outputs. Let x∗ ∈ Xn∗ be the inputs at the desired prediction locations. By conditioning the
joint distribution fs(x,x∗) with respect to x and f , the conditional distribution of f(x∗) = f∗ given x, x∗ and f is
p (f∗|x,x∗, f) ∼ N (µ,Σ) where:

µ = k(x∗,x)K
−1 (f −m(x)) +m(x∗) (3)

Σ = k(x∗,x∗)− k(x∗,x)K
−1 k(x∗,x)

T (4)

where the notations are similar to the previous definitions, and where AT is the transpose of the matrix A.

However, in order to provide the best possible predictions, the GP prior needs to be adequately tuned. The standard
approach for this training phase is to maximize the marginal likelihood p(f |x) of the training data f with respect to
the covariance function (and mean function) hyperparameters. In practice, the log-marginal likelihood is maximized
instead, with gradient-descent type methods (Byrd et al., 1995):

log p(f |x) = −n

2
log(2π)− 1

2
log |K| − 1

2
(f −m(x))TK−1(f −m(x)) (5)

3
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where |K| is the determinant of the matrix K.
Now let us consider once more the inverse problem described in the previous section. Let us assume that we have a
training set (x, f) obtained after n calls to the direct model f . The direct model is often a costly computer code and the
computational budget limits the size of our training dataset. We suppose that the training outputs f = (f1, ..., fn) are
not noisy, while the observations y = (y(k))1≤k≤N are, with a zero-mean Gaussian noise with variance σ2

m. This is
the case when the observations are obtained from experiments, while the training data are based on a deterministic
computer model.
Let us consider a GP surrogate model fs for the direct model f , which is built from the training data (x, f). For a
given input point x ∈ X , its predictive distribution is denoted as fs(x) ∼ N

(
fs(x), vs(x)

)
where fs(x) and vs(x)

are the predictive mean and variance obtained from equations (3) and (4). The uncertainties in the inverse problem
resolution can be split between the aleatoric uncertainty, linked to the noise of the observations, and the epistemic
uncertainty which is the uncertainty of the surrogate model itself (Lartaud et al., 2023). The two sources of uncertainty
are independent from one another and one can express the observations as noisy predictions of the GP predictive mean,
with two independent sources of errors:

y = fs(x) + η(x) + ε (6)

where fs(x) = (fs(x), ..., fs(x)) ∈ RN , η(x) ∼ N (0, vs(x)1N ) and ε ∼ N
(
0, σ2

mIN
)

are respectively the
epistemic and aleatoric uncertainty terms. IN is the identity matrix of size N ×N and 1N is the matrix of ones of size
N ×N . This formulation expresses the idea that the observations are independent with respect to the observation noise,
but are all linked together by the surrogate model error.
The inverse problem can then be solved by computing a posterior distribution with a new likelihood which accounts for
both sources of uncertainties.

p(x|y) ∝ 1√
(2π)N |Ctot(x)|

exp

[
−1

2

(
(y − fs(x))

TCtot(x)
−1(y − fs(x))

)]
(7)

with Ctot(x) = vs(x)1N + σ2
mIN . This new posterior distribution can then be sampled by MCMC methods. With this

approach, both the uncertainties of the observations and the uncertainties of the surrogate model are included in the
Bayesian resolution of the inverse problem.
This expression of the posterior distribution can actually be further simplified.
Proposition 2.2. The posterior distribution p(x|y) from equation (7) is equal within a multiplicative constant to the
simplified posterior p(x|y) defined by:

p(x|y) ∝ (σ2
m +Nvs(x))

−1/2 exp

−1

2


(
y − fs(x)

)2
vs(x) +

σ2
m

N


 (8)

where y = 1
N

N∑
k=1

y(k) is the empirical mean of the observations. In other words, the posterior distribution can be

obtained in a similar manner by considering only the empirical mean of the observations y and dividing the observation
variance by a factor N .

The proof is left in appendix B. This simplified likelihood is used in the numerical applications to reduce the computa-
tional cost of the MCMC sampling.

3 Stepwise uncertainty reduction

In this section the stepwise uncertainty reduction framework, introduced by Bect et al. (2012) and Villemonteix et al.
(2009) is presented. The goal of the SUR strategy is to build a sequential design strategy for the training data of a
surrogate model so as to minimize a given metric of uncertainty. This section only provides a brief introduction to this
subject and for a more thorough description of the SUR methods, the authors refer to the above articles.

3.1 General methodology

Let F be a functional space, andM the set of Gaussian measures on F. In our problem, the functional space considered
is the space of continuous real-valued functions on a compact space X ⊂ Rp such that F = C(X ). Let (Ω,F ,P) be a
probability space. In everything that follows, we will consider Gaussian processes with continuous sample paths, defined
on X×Ω. Such Gaussian processes can be understood as random elements ofF (Vakhania et al., 1987; Bogachev, 1998).

4
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Proposition 3.1. For any Gaussian measure ν ∈M, there exists a Gaussian process with continuous sample paths
whose probability distribution is ν (van der Vaart et al., 2008). The corresponding mean and covariance functions are
denoted mν : X −→ R and kν : X × X −→ R. On the other hand, the probability distribution P f of any given Gaussian
process with continuous sample paths fs : X × Ω is a Gaussian measure on F, and thus P f ∈M.

Let us consider a measurable functional H : M −→ R+ which will serve as the metric of uncertainty that we would like
to minimize.

Definition 3.1. Let fs be a Gaussian process and consider that to any design point x ∈ X corresponds a random output
given by z = fs(x). A sequential design is a collection (xn)n≥1 such that for all n ≥ 1, xn+1 is Fn-measurable, with
Fn the σ-algebra generated by the collection (x1, z1, ..., xn, zn).

Let fs be a Gaussian process and (xn)n≥1 be a sequential design with corresponding values (zn)n≥1. It can be shown
that for any n ≥ 1, there exists a Gaussian measure denoted by P f

n , which is the probability distribution of fs given Fn.
More simply put, conditioning a GP with respect to a finite number of observations still yields a GP. The corresponding
mean and covariance function are denoted by mn and kn. The Gaussian measure P f

n can thus be interpreted as a
random element ofM, and H(P f

n ) is a positive real-valued random variable.
The goal of SUR strategies is to find a sequential design (xn)n≥1 which guarantees the almost-sure convergence of the
metric of uncertainty towards 0:

H(P f
n )

a.s.−−−−−→
n→+∞

0. (9)

Definition 3.2. Consider a metric H : M −→ R+. The metric H is said to have the supermartingale property if and only
if, for any Gaussian process fs, the sequence H(P f

n ) is a Fn-supermartingale or in other words for any x ∈ X :

En,x

[
H(P f

n+1)
]
≤ H(P f

n ) (10)

where En,x denotes the conditional expectation given Fn and xn+1 = x.

Proposition 3.2. (Bect et al., 2019) There exists a measurable mapping

(X ×R)n ×M −→M

(x1, z1, ..., xn, zn, ν) 7−→ ν|(x1, z1, ..., xn, zn)

such that for any Gaussian process fs with probability measure ν ∈M and any sequential design (x1, z1, ..., xn, zn),
the measure ν|(x1, z1, ..., xn, zn) is the probability distribution of fs given Fn = σ(x1, z1, ..., xn, zn).

Definition 3.3. If H has the supermartingale property, for x ∈ X let us introduce the functional Jx : M −→ R+ which
is the expectation of the uncertainty when conditioning the GP with respect to a new data point (x, z) and given by

Jx(ν) = Ez(x) [H (ν|(x, z))] (11)

for ν ∈ M and where z(x) ∼ N (mν(x), kν(x, x)) and Ez(x) refers to the expectation with respect to the random
output z.

Definition 3.4. For H with the supermartingale property, we introduce a functional G : M −→ R+ defined for ν ∈M by

G(ν) = sup
x∈X

(H(ν)− Jx(ν)) . (12)

The set of zeros of H and G are denoted respectively by ZH and ZG . The inclusion ZH ⊂ ZG is always true because
0 ≤ G(ν) ≤ H(ν).

Definition 3.5. A SUR sequential design for the functional H is defined as a sequential design such that for all n ≥ n0

with n0 a given integer:

xn+1 ∈ argminx∈X

{
En,x

[
H(P f

n+1)
]}

. (13)

For the rest of this paper, let us introduce the notations Hn = H(P f
n ) and Jn(x) = Ez(x)

[
H
(
P f
n |(x, z)

)]
=

En,x

[
H(P f

n+1)
]

where z(x) ∼ N (mn(x), kn(x, x)) which will be frequently used in the next sections.

SUR strategies are thus obtained by minimizing the expected mean of a given metric of uncertainty conditioned by the
knowledge of the yet unknown new design point. In the next paragraph, the main convergence result of SUR strategies
is presented.

5
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3.2 Convergence results

Definition 3.6. For any sequence of Gaussian measures (νn)n≥0, we say that the sequence (νn)n≥0 converges towards
the limit measure ν∞ ∈Mwhen (mνn)n≥0 converges uniformly in X towards mν∞ , and (kνn)n≥1 converges uniformly
in X × X towards kν∞ .

One can show that for any sequential design (xn)n≥1 and for any Gaussian process fs with continuous sample paths,
P f
n converges towards a limit measure P f

∞ ∈M (Bect et al., 2019). The following convergence theorem is presented in
the aforementioned article.

Theorem 3.3. Let H be a non-negative uncertainty functional on M with the supermartingale property, and let
G be the functional defined in equation (12). Consider (xn)n≥1 a SUR sequential design for H. If ZH = ZG ,
H(P f

n )
a.s.−−−−−→

n→+∞
H(P f

∞) and G(P f
n )

a.s.−−−−−→
n→+∞

G(P f
∞), then Hn = H(P f

n )
a.s.−−−−−→

n→+∞
0.

This theorem will be our main tool to prove the almost-sure convergence of the chosen metric of uncertainty, in the
specific context of Bayesian inverse problems.

3.3 Standard SUR sequential design strategies

Various metric of uncertainties can be used depending on the underlying tasks. For Bayesian optimization problems,
the efficient global optimization algorithm (EGO) (Jones et al., 1998; Snoek et al., 2012) can be interpreted as a SUR
sequential design. The EGO strategy, which aims at minimizing a black-box function f is given by:

xn+1 ∈ argminx∈XEz(x) [max(fmin − z, 0)] (14)

where z(x) ∼ N (mn(x), kn(x, x)), Ez(x) is the expectation with respect to z(x) and fmin = min{f1, ..., fn}. The
corresponding functional in the SUR paradigm can be found in Bect et al. (2019).
The integrated Bernoulli variance is an other common functional used mainly for excursion problems (Chevalier et al.,
2014), and defined for a compact space X by:

H(ν) =

∫
X
pν(x)(1− pν(x))dx (15)

where ν ∈ M and pν(x) is the probability that the Gaussian random variable fν(x) associated to ν exceeds a given
excursion threshold t:

pν(x) = P(fν(x) ≥ t). (16)

4 SUR sequential design for Bayesian inverse problems

Let us get back to the main problem at stake here, which is the Bayesian resolution of an ill-posed inverse problem. In
this work, the following question is asked. How can new design points be added to train the surrogate model, provided
we have some limited computational budget available ? In this section, a first strategy based on a D-optimal design
criterion is presented and then a second approach based on the SUR paradigm for a well-chosen metric of uncertainty is
derived. This new strategy named IP-SUR (Inverse Problem SUR) is shown to be tractable for GP surrogates and is
supported by theoretical guarantee of almost-sure convergence to zero for the metric of uncertainty.

4.1 Constraint set query

Intuitively, when adding a new design point to the dataset, we would like this point to yield the best improvement to the
surrogate model. In this case, one could try to choose the point whose predictive variance is the highest, or equivalently
in a multi-output context, where the determinant of the predictive covariance is the highest.
However, such points may lie well outside the posterior distribution p(x|y) of the inverse problem and thus may not
bring any improvement to the inverse problem itself, though they may improve the surrogate model. The idea is then to
look at new design points that are both expected to yield a good improvement to the surrogate, but which also lie close
to the essential support of the posterior distribution.
Let us consider a GP surrogate fs conditioned by n ∈ N∗ data points. Its predictive distribution at input point x̃ is
Gaussian with mean mn(x̃) and variance kn(x̃, x̃). Keeping the notations of section 2, the noisy observations of the
inverse problem are y = (y(k))1≤k≤N . The global likelihood, introduced in equation (7) is used for the inverse problem
and denoted as Ln(y|x̃) for x̃ ∈ X .

6
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The extended covariance in the global likelihood is denoted Σn(x̃) for x̃ ∈ X :

Σn(x̃) = kn(x̃, x̃)uu
T + σ2

mIN =


kn(x̃, x̃) + σ2

m kn(x̃, x̃) . . . kn(x̃, x̃)

kn(x̃, x̃)
. . . . . .

...
...

. . . . . . kn(x̃, x̃)
kn(x̃, x̃) . . . kn(x̃, x̃) kn(x̃, x̃) + σ2

m

 ∈ RN×N (17)

with u = (1, ..., 1)T ∈ RN and uuT = 1N =

1 . . . 1
...

...
1 . . . 1

 ∈ RN×N .

The global likelihood is given by:

Ln(y|x̃) = ((2π)N |Σn(x̃)|)−1/2 exp

[
−1

2
∥y −mn(x̃)∥2Σn

]
(18)

with mn(x̃) = mn(x̃)u and ∥a∥2C = aTC−1a is the squared Mahalanobis distance for any given N × N positive
definite matrix C and a ∈ RN , and ⟨a|b⟩C is the associated scalar product for a,b ∈ RN . To simplify the notations, we
will only denote Σn or Σn+1 in the subscript of the norm and scalar product, instead of Σn(x̃) and Σn+1(x̃|x). The prior
p(x̃) is assumed uniform. The posterior is given within a multiplicative constant by pn(x̃|y) ∝ p(x̃)Ln(y|x̃) ∝ Ln(y|x̃)
and can be sampled with MCMC methods, which provide a Markov chain (Xl)1≤l≤L where L is the length of the
Markov chain, whose invariant distribution is the posterior distribution pn(x̃|y).
A first approach would be to choose our next training point xn+1 ∈ X as the maximizer of the predictive variance on a
well-chosen subset B ⊂ X :

xn+1 ∈ argmaxx̃∈B kn(x̃, x̃). (19)
How can we choose B ? One could try to force the newly chosen design points to be near the maximum a posteriori
(MAP) x(n)

m defined by:
x(n)
m ∈ argmaxx̃∈X pn(x̃|y). (20)

Then for any b ∈ R+ one can define the subset B(n)
b such as:

B(n)
b =

{
x̃ ∈ X | log pn

(
x(n)
m |y

)
− log pn(x̃|y) ≤ b

}
. (21)

To get an intuition of the influence of b, let us look at the acceptance probability α(n)(x1, x2) for a jump from point x1

to x2 in the context of Metropolis-Hastings sampling with a symmetric proposal distribution:

α(n)(x1, x2) = min

{
1,

pn(x2|y)
pn(x1|y)

}
= min

{
1,

Ln(y|x2)p(x2)

Ln(y|x1)p(x1)

}
. (22)

Then B(n)
b =

{
x̃ ∈ X | logα(n)(x

(n)
m , x̃) ≥ −b

}
=
{
x̃ ∈ X |α(n)(x

(n)
m , x̃) ≥ e−b

}
. Thus, e−b for b ∈ R+ represents

the lowest possible acceptance probability of a Metropolis-Hastings jump from the MAP to x̃ ∈ B(n)
b . Depending on

the choice of b, the new query point xn+1 will be chosen quite close to the MAP (if b is close to 0) or it can be allowed
to spread far from the MAP (if b is large).
This constraint set query (CSQ) method is a first simple approach for active learning in the context of Bayesian inverse
problems. This method can be understood as a D-optimal sequential design strategy (Antognini and Zagoraiou, 2010)
restricted to a subset of the domain.

4.2 Metric of uncertainty for inverse problems

Now, let us use the SUR framework to derive a second sequential design well suited for Bayesian inverse problems.
For any Gaussian measure ν on F = C(X ), we denote by mν(x̃) and kν(x̃, x̃) the corresponding mean and variance
function of the associated GP fs, at input point x̃ ∈ X . The likelihood obtained in the inverse problem with the surrogate
fs is denoted Lν(y|x̃) and given in (8). The corresponding posterior density is denoted by pν(x̃|y) ∝ p(x̃)Lν(y|x̃).
We introduce the functional H : M −→ R+:

H(ν) = Epν [kν(x̃, x̃)] =

∫
X
kν(x̃, x̃)pν(x̃|y)dx̃. (23)

This functional is a weighted integrated Mean Squared Prediction Error (weighted-IMSPE). The weight is the posterior
density, which focuses the attention on the region of interest for the inverse problem. In the next sections, the
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almost-sure convergence of this metric to 0 will be shown for a SUR sequential design. This functional is derived from
I-optimal designs in which the metric of interest is the integrated predictive variance over the whole design space. Let
us now write more explicitly this IP-SUR strategy.

4.2.1 Evaluation of the metric

Consider a GP surrogate model fs, conditioned on n pairs input-output. The Gaussian measure obtained after
conditioning is P f

n and the associated mean and covariance functions are mn : X −→ R and kn : X ×X −→ R. Let x be
a new design point and z the corresponding random output (we write z instead of z(x) for concision sake). At stage
n+1, we condition the GP with the new datapoint (x, z) which updates the predictive distribution. For x̃ ∈ X , x̃1 ∈ X
and x̃2 ∈ X , the updated mean and covariance functions of the newly conditioned GP are:

mn+1(x̃|x, z) = mn(x̃) +
kn(x, x̃)

kn(x, x)
(z −mn(x)) (24)

kn+1(x̃1, x̃2|x) = kn(x̃1, x̃2)−
kn(x, x̃1)k(x, x̃2)

kn(x, x)
. (25)

We are interested in the variance integrated over the posterior distribution. The quantity of interest Hn is given by:

Hn = H(P f
n ) =

∫
X
kn(x̃, x̃)pn(x̃|y)dx̃. (26)

When adding a new data point (x, z), the quantity of interest becomes:

Hn+1(x, z) =

∫
X
kn+1(x̃, x̃|x)pn+1(x̃|y, x, z)dx̃ (27)

where pn+1(x̃|y, x, z) ∝ Ln+1(y|x̃, x, z)p(x̃) is the updated posterior density and Ln+1(y|x̃, x, z) is the updated
likelihood given by:

Ln+1(y|x̃, x, z) = ((2π)N |Σn+1(x̃|x)|)−1/2 exp

[
−1

2
∥y −mn+1(x̃|x, z)∥2Σn+1

]
(28)

Σn+1(x̃|x) = Σn(x̃)− λn(x, x̃)uu
T (29)

with λn(x, x̃) =
kn(x,x̃)

2

kn(x,x)
.

The inverse and the determinant of Σn+1(x̃|x) are obtained by Woodbury’s formula:

Σn+1(x̃|x)−1 = Σn(x̃)
−1 +

λn(x, x̃)

1− λn(x, x̃)∥u∥2Σn

Σn(x̃)
−1uuTΣn(x̃)

−1 (30)

|Σn+1(x̃|x)| = |Σn(x̃)|
(
1− λn(x, x̃)∥u∥2Σn

)
. (31)

Our objective is to minimize the metric of uncertainty Hn. For that purpose, the stepwise uncertainty reduction paradigm
is adapted for this specific problem. For any x ∈ X , let us introduce:

Jn(x) = En,x

[
H(P f

n+1)
]
. (32)

More simply, Jn(x) can be calculated as the expectation of Hn+1(x, z) with respect to z(x) where z(x) ∼
N (mn(x), kn(x, x)):

Jn(x) = Ez(x) [Hn+1(x, z)] (33)

where Ez(x) is the expectation w.r.t. z(x).
Thus the IP-SUR sequential design strategy is obtained by minimizing Jn(x) on X :

xn+1 ∈ argminx∈X Jn(x). (34)

We can claim that the IP-SUR strategy is interesting if we can solve the following two problems. First, we need to
make sure the quantity Jn(x) can be evaluated in a closed form (up to a multiplicative constant) in order to solve
(34). Otherwise, a suitable approximation must be used as is done in Zhang et al. (2019) for an expected improvement
criterion for example. Second, we need to show the convergence of the metric of uncertainty.
The first focus is on Jn(x) = Ez(x) [Hn+1(x, z)]. Since in our work, we have access to an ergodic Markov chain for
the posterior distribution, we want to write Jn(x) as an expectation with respect to this posterior, and use the ergodicity
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of the chain to evaluate the expectation.
Let us introduce the following notations for the sake of concision:

g(x̃, x) = kn+1(x̃, x̃|x)
|Σn(x̃)|1/2

|Σn+1(x̃|x)|1/2
(35)

h(x̃, x) = g(x̃, x) exp

[
−1

2

(
∥y −mn(x̃)∥2Σn+1

− ∥y −mn(x̃)∥2Σn

)]
(36)

µ(x̃, x, z) = mn+1(x̃|x, z)−mn(x̃) =
kn(x̃, x)

kn(x, x)
(z −mn(x)) (37)

I(x̃, x) =
1√

λn(x, x̃)∥u∥2Σn+1
+ 1

exp

[
λn(x, x̃) ⟨y −mn(x̃)|u⟩2Σn+1

2(λn(x, x̃)∥u∥2Σn+1
+ 1)

]
. (38)

Proposition 4.1. With the notations introduced in equations (35) through (38), for x ∈ X , the quantity Jn(x) is given
by:

Jn(x) =
Cn

Cn+1

∫
X
pn(x̃|y)h(x̃, x)I(x̃, x)dx̃ (39)

where we introduce for n ∈ N the normalization constant Cn =
∫
X p(x̃)Ln(y|x̃)dx̃.

Proof. The first step is to use Fubini’s theorem to remove the expectation with respect to z. Let ϕn(z) be the density of
the normal distribution N (mn(x), kn(x, x)).

Jn(x) =
1

Cn+1

∫
R

∫
X
kn+1(x̃, x̃|x)Ln+1(y|x̃, x, z)p(x̃)ϕn(z)dx̃ dz

=

∫
X
kn+1(x̃, x̃|x)

∫
R

Ln+1(y|x̃, x, z)p(x̃)ϕn(z)dz dx̃

=
Cn

Cn+1

∫
X

Ln(y|x̃)p(x̃)
Cn

g(x̃, x)

×
∫
R

exp

[
−1

2

(
∥y −mn+1(x̃|x, z)∥2Σn+1

− ∥y −mn(x̃)∥2Σn

)]
ϕn(z)dz dx̃

=
Cn

Cn+1

∫
X
pn(x̃|y)h(x̃, x)

×
∫
R

exp

[
−1

2

(
∥µ(x̃, x, z)∥2Σn+1

+ 2 ⟨y −mn(x̃)|µ(x̃, x, z)⟩Σn+1

)]
ϕn(z)dz dx̃

and µ(x̃, x, z) = µ(x̃, x, z)u = (µ(x̃, x, z), .., µ(x̃, x, z))T ∈ RN is the extended vector of µ(x̃, x, z).
Let us now focus on the integral with respect to z denoted I(x̃, x):

I(x̃, x) =

∫
R

exp

[
−1

2

(
∥µ(x̃, x, z)∥2Σn+1

+ 2 ⟨y −mn(x̃)|µ(x̃, x, z)⟩Σn+1

)]
ϕn(z)dz

=

∫
R

exp

[
−1

2

(
µ(x̃, x, z)2 ∥u∥2Σn+1

+ 2µ(x̃, x, z) ⟨y −mn(x̃)|u⟩Σn+1

)]
ϕn(z)dz

=

∫
R

1√
2πkn(x, x)

exp

[
−ε2

2

(
λn(x, x̃) ∥u∥2Σn+1

+ kn(x, x)
−1
)

− ε

(
kn(x, x̃)

kn(x, x)
⟨y −mn(x̃)|u⟩Σn+1

)]
dε

with a change of variable ε = (z −mn(x)). Finally, the integral can be evaluated:

I(x̃, x) =
1√

λn(x, x̃)∥u∥2Σn+1
+ 1

exp

[
λn(x, x̃) ⟨y −mn(x̃)|u⟩2Σn+1

2(λn(x, x̃)∥u∥2Σn+1
+ 1)

]
. (40)

Thus, we have shown that Jn(x) = Cn

Cn+1

∫
X pn(x̃|y)h(x̃, x)I(x̃, x)dx̃.
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Since Jn(x) is needed only to find new design points with the IP-SUR strategy (34), the knowledge or estimation of the
constants Cn is not required. The new design points can be obtained by:

xn+1 = argminx∈X J̃n(x) (41)

J̃n(x) =
Cn+1

Cn
Jn(x) =

∫
X
pn(x̃|y)h(x̃, x)I(x̃, x)dx̃. (42)

Since the Markov chain (Xl)1≤l≤L built to solve the inverse problem is ergodic with invariant distribution being the

posterior distribution pn(x̃|y), J̃n(x) can be evaluated for all x ∈ X by:

J̃n(x) ≃
1

L

L∑
l=1

h(Xl, x)I(Xl, x). (43)

4.2.2 Convergence of the IP-SUR sequential design

In this section, some results on the convergence of the functional H are highlighted. The theoretical foundation of this
work can be found in Bect et al. (2019).
As a first step, the supermartingale property is shown for an auxiliary functional. This lemma is then used to derive the
main convergence theorem.
Lemma 4.2. The functional D : M −→ R+ defined for any Gaussian measure ν ∈M by:

D(ν) = [kν(x̃, x̃)] =

∫
X
kν(x̃, x̃)Lν(y|x̃)p(x̃)dx̃ (44)

has the supermartingale property. In other words, for any sequential design (xn)n∈N, there exists n0 ∈ N such that for
all n ≥ n0, and for all x ∈ X

En,x

[
D(P f

n+1)
]
≤ D(P f

n ). (45)

The proof of this proposition is given in appendix A. Note that D(ν) = Cν ×H(ν) with Cν =
∫
X Lν(y|x̃)p(x̃)dx̃.

Lemma 4.3. If Cn =
∫
X Ln(y|x̃)p(x̃)dx̃, then the sequence (Cn)n∈N converges almost surely and its limit is positive

and given by:

C∞ =

∫
X
L∞(y|x̃)p(x̃)dx̃ (46)

where L∞(y|x̃) is defined for x̃ ∈ X by:

L∞(y|x̃) = ((2π)N |Σ∞(x̃)|)−1/2 exp

[
−1

2
∥y −m∞(x̃)∥2Σ∞

]
(47)

with m∞ and k∞ being the respective limits of the GP mean function (mn)n∈N and covariance function (kn)n∈N and
Σ∞(x̃) = k∞(x̃, x̃)uuT + σ2

mIN for x̃ ∈ X .

Proof. Let us first prove the convergence of the mean functions (mn)n∈N. From proposition 2.9 in Bect et al.
(2019), for any sequential design and for any Gaussian process, the probability distribution of the GP given Fn =
σ(x1, z1, ..., xn, zn), which is denoted by P f

n , converges almost surely to a limit Gaussian measure P f
∞ ∈ M. Since

the convergence of Gaussian measures is defined as the uniform convergence of the mean functions (mn)n∈N and
covariance functions (kn)n∈N we can then define m∞ = limn→+∞ mn which is the mean function of the GP whose
probability distribution is P f

∞. Furthermore, since mn and kn are continuous and (mn)n∈N (resp. (kn)n∈N) converges
uniformly to m∞ (resp. k∞), then m∞ and k∞ are continuous.
From here we show that Σn(x̃)

a.s.−−−−−→
n→+∞

Σ∞(x̃) = k∞(x̃, x̃)uuT + σ2
mIN with k∞(x̃, x̃) ≥ 0. By continuity of all

the other matrix operations, we have Ln(y|x̃)
a.s.−−−−−→

n→+∞
L∞(y|x̃) with:

L∞(y|x̃) = ((2π)N |Σ∞(x̃)|)−1/2 exp

[
−1

2
∥y −m∞(x̃)∥2Σ∞

]
. (48)

To conclude, we just need to notice the L∞ is continuous (with respect to x̃) since m∞ and k∞ are continuous. It is
thus bounded on the compact set X and we can make use of the dominated convergence theorem to conclude:

lim
n→+∞

∫
X
Ln(y|x̃)p(x̃)dx̃ =

∫
X

lim
n→+∞

Ln(y|x̃)p(x̃)dx̃ =

∫
X
L∞(y|x̃)p(x̃)dx̃ = C∞. (49)

Besides, since L∞(y|x̃)p(x̃) > 0 for all x̃ ∈ X and X is a compact, 0 < C∞ < +∞ almost-surely.
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Then, let us investigate the convergence of the functional H. The theorem 3.3 is our main tool to prove the convergence
of H.

Theorem 4.4. Consider the functional H defined in (23) and a SUR sequential design (xn)n∈N. Then, the metric of
uncertainty Hn converges almost surely to 0:

Hn
a.s.−−−−−→

n→+∞
0.

Proof. This proof is divided into two parts. First of all, we show that Dn = D(P f
n )

a.s.−−−−−→
n→+∞

0 using the supermartingale

property and the convergence theorem from Bect et al. (2019). Then, we show the convergence for Hn using lemma 4.3.
Let us first show that Dn

a.s.−−−−−→
n→+∞

0. Consider a Gaussian process fs and a SUR sequential design (xn)n∈N given by

the strategy (34) defined for the functional H. This design is also a SUR sequential design for the functional D since
the two only differ by a multiplicative constant. Let us verify the conditions of theorem 3.3 for the functional D. We
introduce the functional G which is defined for ν ∈ M by:

G(ν) = sup
x∈X

(
D(ν)− Ez(x) [D(ν|(x, z))]

)
. (50)

If P f
n is the probability of fs given Fn = σ(x1, z1, .., xn, zn), then there exists an F∞-measurable random element

P f
∞ ∈ M such that P f

n
a.s.−−−−−→

n→+∞
P f
∞, with F∞ = σ

(⋃
n≥1 Fn

)
, and such that P f

∞ is the conditional probability of

fs given F∞. The associated mean and covariance functions are introduced as m∞ and k∞. Since the functions mn

are continuous and the sequence (mn)n∈N converge uniformly toward the limit mean function m∞, then m∞ is also
continuous. The same reasoning holds for k∞.
From here, the convergence of D(P f

n )
a.s.−−−−−→

n→+∞
D(P f

∞) and G(P f
n )

a.s.−−−−−→
n→+∞

G(P f
∞) is obtained by dominated

convergence on the compact X and by continuity of the mean and variance of the Gaussian posterior measure.
Now, let us show that ZD = ZG , where ZD and ZG are the set of zeros of the functionals D and G. The first inclusion
ZD ⊂ ZG is trivial since 0 ≤ G(ν) ≤ D(ν) for all ν ∈M. Now, let P f ∈ ZG . It is a Gaussian measure associated to a
GP fs. We want to show that D(P f ) = 0. We will prove this result for the posterior measure P f

n for all n ≥ 0 to be
able to re-use the previous notations, though we are only interested in the case n = 0. In particular P f = P f

0 .

Let us introduce Fn(x) = En,x

[
D(P f

n+1)
]
= Ez(x)

[
D
(
P f
n |(x, z)

)]
. From this, G(P f

n ) = Dn − infx∈X Fn(x) = 0.
Then, the supermartingale property of D yields that for all x ∈ X :

0 ≤ Dn − Fn(x) ≤ Dn − inf
x∈X

Fn(x) = 0 (51)

thus Dn − Fn(x) = 0 for all x ∈ X .
Using equation (64), if Dn − Fn(x) = 0, then for almost all x̃ ∈ X , we have either kn(x̃, x̃) = 0 or l(x, x̃) = 0,
since Ln(y|x̃) > 0 for all x̃ ∈ X . In other words, the set Cx = {x̃ ∈ X |kn(x̃, x̃)l(x, x̃) ̸= 0} has Lebesgue measure
zero, for all x ∈ X . Besides, since l(x, x̃) ≥ 0 and l(x, x̃) = 0 if and only if kn(x, x̃) = 0 (see appendix A), then
Cx = {x̃ ∈ X |kn(x̃, x̃)kn(x, x̃) ̸= 0}.
To conclude that P f

n ∈ ZD, it is sufficient to show that Zk = {x̃ ∈ X |kn(x̃, x̃) ̸= 0} has Lebesgue measure zero,
because Cx ⊂ Zk. Let us proceed by contradiction.
Assume for now that there exists X1 ⊂ X such that for all x̃ ∈ X1, kn(x̃, x̃) ̸= 0 and such that µ(X1) > 0 where µ is
the Lebesgue measure on Rp. By continuity of the function x̃ 7→ kn(x̃, x̃), one can assume that X1 is an open set. Let
us now take x ∈ X1. Then by continuity, the set X2 = {x̃ ∈ X1|kn(x, x̃) > 0} is a non-empty open set. Its Lebesgue
measure is thus strictly positive.
Based on equation (64):

Dn − Fn(x) =

∫
X
kn(x̃, x̃)Ln(y|x̃)p(x̃)l(x, x̃)dx̃ ≥

∫
X2

kn(x̃, x̃)Ln(y|x̃)p(x̃)l(x, x̃)dx̃ (52)

since for all x̃ ∈ X2 we have kn(x̃, x̃) > 0 and Ln(y|x̃)l(x, x̃) > 0, then Dn − Fn(x) > 0.
This is enough to conclude by contradiction that µ(Zk) = 0, and thus D(P f

n ) = 0. Therefore D(P f ) = 0 and one can
conclude that ZD = ZG .
All the assumptions of the theorem 3.3 are verified, the almost sure convergence of Dn is proven.
Now consider (Cn)n∈N the sequence of normalizing constants, defined by Cn =

∫
X Ln(y|x̃)p(x̃)dx̃. From lemma

4.3 and using the same notations, limn→+∞ Cn = C∞ =
∫
X L∞(y|x̃)p(x̃)dx̃ which is positive almost-surely. Since

Dn
a.s.−−−−−→

n→+∞
0 and Hn = Dn

Cn
, we can conclude that:

Hn
a.s.−−−−−→

n→+∞
0. (53)
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Remark. Theorem 3.3 can actually be extended to quasi-SUR sequential design, as stated by Bect et al. (2019).
(xn)n∈N is a quasi-SUR sequential design if there exists a sequence (εn)n∈N of non-negative real numbers such that
εn

n→+∞−−−−−→ 0, and if there exists n0 ∈ N such that (xn)n∈N verifies Jn(xn+1) ≤ infx∈X Jn(x) + εn for all n ≥ n0.
This remark is crucial for numerical applications since there is often no guarantee that the true global minimum is
reached in the optimization step for the IP-SUR strategy. The convergence theorem for the quasi-SUR designs is more
flexible with that regard and ensures the convergence even for numerical applications.

5 Application

5.1 Set-up and test cases

The IP-SUR strategy presented in this paper is applied to various test cases for different shapes of posterior distributions,
and is then compared to the CSQ approach described in section 4.1, to a naive approach where the new design point are
sampled uniformly in the design space and to a state-of-the-art sequential design based on Bayes risk minimization. The
numercial experiments were conducted with Python and the code is available on GitHub1. These applications rely on
multi-output Gaussian process surrogate models. In the first two test cases, we are considering simple test cases in two
dimensions. In the last test case, the strategies are applied to a more difficult example taken from neutron noise analysis,
a technique whose goal is to identify fissile material from measurements of temporal correlations between neutrons.
In everything that follows, the direct model is always considered too costly to be called directly and is replaced by a GP
surrogate. The observations of the direct model are noisy with a known noise covariance Σ. The multi-output Gaussian
process surrogate model is based on the Linear Model of Coregionalization described in (Bonilla et al., 2007). To build
this surrogate model, a training dataset of n0 = 10 input-output pairs (x, f) is accessible, where x = (xj)1≤j≤n0

and
f = (fj)1≤j≤n0

. The surrogate model obtained is denoted f
(0)
s .

This initial surrogate model is our starting point from which a sequential design is built. At each iteration, a new
design point is acquired with the IP-SUR and CSQ strategies developed in this article, and the GP surrogate is updated
to form a new surrogate f

(n)
s . The posterior distribution obtained with the initial GP is denoted p0(x̃|y) and after

n ≥ 1 iterations, the new posterior distribution is pn(x̃|y). Similarly, L0(y|x̃) and Ln(y|x̃) are the initial and updated
likelihoods in the inverse problem.
At each iteration, a new Markov chain (Xl)1≤l≤L is generated with L = 5 × 104 with the HMC-NUTS sampler
(Betancourt, 2017; Salvatier et al., 2016) from the PyMC3 library in Python. The prior in the inverse problem is always
taken uniform on the input domain.
To compare the different approaches for sequential design, performance metrics are needed. The first obvious metric to
consider is the integrated variance (IVAR) as introduced in the IP-SUR strategy. For multi-output cases, the definition is
extended from (23), where the predictive variance kν(x̃, x̃) is replaced by the determinant of the predictive covariance
|kν(x̃, x̃)| of the multi-output GP surrogate. The IVAR functional H : M −→ R+ is thus defined for ν ∈ M as:

H(ν) = Epν
[|kν(x̃, x̃)|] =

∫
X
|kν(x̃, x̃)|pν(x̃|y)dx̃. (54)

The iterative values Hn = H(P f
n ) of the metric are evaluated for each iteration. The next metric considered is the

differential entropy of the posterior distribution:

Sn = −
∫
X
pn(x̃|y) log pn(x̃|y)dx̃. (55)

Because we have access to ergodic Markov chains (Xl)1≤l≤L and the prior is uniform, the differential entropy can be
estimated by:

Sn ≃ − 1

L

L∑
l=1

log pn(Xl|y) (56)

where the posterior densities are obtained from kernel density estimation using the MCMC samples.
The other metric considered is the Kullback-Leibler divergence KL(pn∥p∞) between a posterior pn and a reference
posterior distribution p∞ obtained from a GP surrogate f∞

s trained with n∞ = 1000 data points (Kullback and Leibler,
1951):

κn = KL [pn∥p∞] =

∫
X
pn(y|x̃) log

(
pn(x̃|y)
p∞(x̃|y)

)
dx̃. (57)

1https://github.com/plrtd/IPSUR_sequential_design
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To estimate this KL, the ergodicity of the Markov chain is used once again, in combination with the kernel density
estimates for the posterior densities:

κn ≃ 1

L

L∑
l=1

rn(Xl) with rn(x̃) = log

(
pn(x̃|y)
p∞(x̃|y)

)
for x̃ ∈ X . (58)

5.1.1 Banana posterior distribution

In this first test case, the target posterior distribution has a banana shape as displayed in Figure 1.

Figure 1: Banana-shaped target posterior distribution

This posterior distribution is similar to the one introduced in Sürer et al. (2023) and is described by the following
analytical direct model:

fb : Xb −→ R2

(x1, x2) 7−→ (x1, x2 + 0.03x2
1)

where Xb = [−20, 20]× [−10, 10] ⊂ R2. For a single observation y = (y1, y2), the posterior has the density:

pb(x|y) ∝ exp

(
−1

2

(x1 − y1)
2

100
− 1

2

(
x2 + 0.03x2

1 − y2
)2)

. (59)

The observations y = (y(k))1≤k≤N are generated with N = 5 and such that for 1 ≤ k ≤ N we have y(k) ∼ N (µ,Σ)
with µ = (0, 3) and:

Σ =

(
100 0
0 1

)
. (60)

5.1.2 Bimodal posterior distribution

On this second test case, the target posterior is bimodal as plotted in Figure 2. The corresponding direct model is fm
defined as:

fm : Xm −→ R2

(x1, x2) 7−→ (x2 − x2
1, x2 − x1)
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where Xm = [−6, 6]× [−4, 8] ⊂ R2. For a single observation y = (y1, y2), the posterior has the density:

pb(x|y) ∝ exp

(
−
√
0.2

10
(x2 − x2

1 − y1)
2 −

√
0.75

10

(
x2 + 0.03x2

1 − y2
)2)

. (61)

The observations y = (y(k))1≤k≤N are generated with N = 10 and such that for 1 ≤ k ≤ N we have y(k) ∼ N (µ,Σ)
with µ = (0, 2) and:

Σ =

(
5√
0.2

0

0 5√
0.75

)
. (62)

Figure 2: Bimodal target posterior distribution

5.1.3 A practical application to neutron noise analysis

Now let us consider an example taken from a practical problem in neutron noise analysis (Pázsit and Pál, 2007). In this
application, the direct model is the analytical approximation of a more complex direct model which involves a full 3D
neutron transport model.
Let us consider the following problem. Let fp : X 7→ R3 be the analytical direct model defined in appendix D, with
X ⊂ R4. Let y = (y(k))1≤k≤N be the N = 20 noisy observations of the direct model:

y(k) = fp(xth) + ε(k) with ε(k) ∼ N (0,Cm) (63)

where xth ∈ X is the true value of the inputs. The domain of interest for the input parameters is:

X = [0.7, 0.9]× [0.01, 0.10]× [1× 105, 2× 105]× [0.1, 0.9].

Some two-dimensional marginals of the posterior distribution p∞ obtained with a well-trained GP are shown in Figure
3.
This posterior distribution is more difficult to sample as it mostly lies on a one dimensional manifold subspace in
the four-dimensional parameter space. The decorrelation time τ in HMC-NUTS is significantly larger with τ ≃ 200
compared to τ ≃ 10 for the two previous test cases. Thus, the number of MCMC samples is increased to 2 × 105

iterations per run for that specific test case.
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Figure 3: Two-dimensional marginal distributions from the target posterior distribution in the neutron noise analysis
case study with x = (kp, εF , S, xs)

5.2 Results

Both the IP-SUR sampling strategy and the CSQ method require to solve an optimization problem with a non-convex
function. The optimization problem is solved with a dual annealing approach (Xiang et al., 1997). The IP-SUR
strategy and the CSQ method are applied iteratively 10 times to produce new design points. For the CSQ strategy, the
hyperparameter b introduced in (21) is set to b = 3. The influence of b is discussed afterwards.

Figure 4: Performance metrics - Banana test case

The evolution of the metrics are plotted on Figure 4, 5 and 6 for both sequential design strategies and for the naive
strategy where the design points are chosen with a uniform distribution on the prior domain. The empirical 95 %
confidence interval for each metric and strategy are also displayed.

Both the CSQ and SUR strategies perform largely better than the naive strategy. The naive strategy samples design
points randomly in the parameter space and thus targets away from the posterior distribution. The performance metrics
are still decreasing but at a much slower rate than for the CSQ and SUR strategies, especially in higher dimensions.
These two design plans tend to perform similarly on the two-dimensional test cases but the IP-SUR strategy is superior
for the neutronic test case, for which all the metrics are considerably improved.
Based on these results, one could argue that the CSQ strategy can be situationally better as it is easier to set up while
providing similar performance in the end. However, two counter-arguments can be pointed out. First of all, the IP-SUR
strategy does exhibit a guarantee for the convergence of the integrated variance, which offers a strong theoretical
foundation. Besides, though the acquisition function in the IP-SUR strategy is more computationally intensive, the
method does not rely on the prior setting of an arbitrary hyperparameter, while the CSQ design is based on the
hyperparameter b ∈ R+ introduced in the definition of the bounding set B(n)

b in equation (21). This hyperparameter
quantifies how far away from the MAP the optimization problem can search. The choice of this hyperparameter can
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Figure 5: Performance metrics - Bimodal test case

Figure 6: Performance metrics - Neutronic test case

impact quite drastically the performance of the sequential design. A lower value leads to a more constraint set and thus
an easier optimization problem, however the new design points are confined to a smaller region of the parameter space.

Figure 7: Influence of b - Banana test case

To investigate the influence of b, the CSQ strategy is used once again to provide 10 new design points for varying values
of b ∈ {1, 2, 3}. The metrics obtained for the banana-shaped and bimodal posterior distributions are shown respectively
in Figure 7 and 8. One can see that for b = 1, the design is significantly worsened. We recall that all the previous test
cases where conducted with b = 3 which provide the best results among the selected values. However, the optimal
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Figure 8: Influence of b - Bimodal test case

choice of b is likely dependent on the application and cannot be found easily. For this reason, the IP-SUR strategy
presented in this work seems superior as it does not carry the burden of the selection of an hyperparameter.
Finally, let us compare the performance of our IP-SUR method with the design strategy introduced in (Sinsbeck and
Nowak, 2017). This sequential design strategy is based on the minimization of the Bayes risk with respect to a loss
function measuring the variance of the likelihood estimate with the surrogate model. The same metrics are used for
comparison.

Figure 9: Comparison with Sinsbeck et al. - Banana test case

Figure 10: Comparison with Sinsbeck et al. - Bimodal test case
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Figure 11: Comparison with Sinsbeck et al. - Neutronic test case

The evolution of the metrics are displayed in Figures 9, 10 and 11 for each test case. The two methods offer overall
similar performance with regard to the metrics investigated, though the IP-SUR method seems more reliable for the
bimodal case. Besides, it is backed by a convergence guarantee which is not the case for the method of Sinsbeck et al..
For the latter the supermartingale property seems unreachable.

Conclusion

This work presents two new sequential design strategies to build efficient Gaussian process surrogate models in
Bayesian inverse problems. These strategies are especially important for cases where the posterior distribution in the
inverse problem has a thin support or is high-dimensional, in which case space-filling designs are not as competitive.
The IP-SUR strategy introduced in this work is shown to be tractable and is supported by a theoretical guarantee of
almost-sure convergence of the weighted integrated mean square prediction error to zero. This method is compared to
a simpler CSQ strategy which is adapted from D-optimal designs and to a strategy based on the minimization of the
Bayes risk with respect to the variance of the likelihood estimate. While all methods perform much better than random
selection of design points, the IP-SUR method seems to provide better performance than CSQ for higher dimensions
while not relying on the choice of an hyperparameter, all the while being grounded on strong theoretical foundations. It
is also comparable to the Bayes risk minimization for all test cases and even superior for the bimodal test case. The
latter strategy also does not display convergence guarantee.
The IP-SUR criterion developed in this work can be related to the traditional IMSPE criterion by a tempered variant of the
design strategy (Neal, 2001; Hu and Zidek, 2002; Del Moral et al., 2006) in which we could introduce a tempering param-
eter β ∈ [0, 1] and define a new design strategy based on the functional Hβ(ν) =

1
Cν,β

∫
X kν(x̃, x̃) (Lν(x̃|y))β p(x̃)dx̃

with Cν,β =
∫
X (Lν(x̃|y))β p(x̃)dx̃. The IMSPE criterion can be obtained for β = 0 while the IP-SUR strategy is

obtained for β = 1. The almost-sure convergence can be verified with the same approach as for H.
The extension of this design strategy is yet to be explored for other types of surrogate models. Gaussian process
surrogate models have the advantage of keeping the SUR criterion tractable, though one could consider a variant to
this method with approximation methods to evaluate the SUR criterion, with the risk of losing the guarantee on the
convergence. The robustness of such an approach would also have to be investigated.
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A Proof of supermartingale property for D

Let us prove the supermartingale property. Let fs be a GP and (xn)n∈N be a sequential design. We denote by
P f
n the probability distribution of the GP given Fn = σ(x1, z1, ..., xn, zn). For x ∈ X , we introduce the notation

Fn(x) = En,x

[
D(P f

n )
]
. Let x ∈ X .

Dn − Fn(x) =

∫
X
Ln(y|x̃)kn(x̃, x̃)p(x̃)l(x, x̃)dx̃ (64)

where we introduce:

l(x, x̃) =

[
1−

(
1− λn(x, x̃)

kn(x̃, x̃)

)
|Σn(x̃|x)|1/2

|Σn+1(x̃)|1/2
I(x̃, x)

exp
(
− 1

2 ∥y −mn(x̃)∥2Σn+1

)
exp

(
− 1

2 ∥y −mn(x̃)∥2Σn

)
 .

Let us first show that for any x̃ ∈ X we have
(
1− λn(x,x̃)

kn(x̃,x̃)

)
|Σn(x̃|x)|1/2
|Σn+1(x̃)|1/2

≤ 1. Using equation (31) one can write:(
1− λn(x, x̃)

kn(x̃, x̃)

)
|Σn(x̃|x)|1/2

|Σn+1(x̃)|1/2
=

(
1− λn(x, x̃)

kn(x̃, x̃)

)(
1− λn(x, x̃)∥u∥2Σn

)−1/2
. (65)

Then, 0 ≤ λn(x,x̃)
kn(x̃,x̃)

≤ 1 and since ∥u∥2Σn
= N

σ2
m+Nkn(x̃,x̃)

we know that 0 ≤ kn(x̃, x̃)∥u∥2Σn
≤ 1. Introducing this last

inequality in equation (65) yields:(
1− λn(x, x̃)

kn(x̃, x̃)

)
|Σn(x̃|x)|1/2

|Σn+1(x̃)|1/2
=

(
1− λn(x, x̃)

kn(x̃, x̃)

)(
1− λn(x, x̃)

kn(x̃, x̃)
×
(
kn(x̃, x̃)∥u∥2Σn

))−1/2

≤
(
1− λn(x, x̃)

kn(x̃, x̃)

)(
1− λn(x, x̃)

kn(x̃, x̃)

)−1/2

=

(
1− λn(x, x̃)

kn(x̃, x̃)

)1/2

≤ 1. (66)

The last step is to show that I(x̃, x) exp
(
− 1

2

(
∥y −mn(x̃)∥2Σn+1

− ∥y −mn(x̃)∥2Σn

))
≤ 1. Let us introduce

A(x, x̃) defined by:

A(x, x̃) = ∥y −mn(x̃)∥2Σn+1
− ∥y −mn(x̃)∥2Σn

+
λn(x, x̃) ⟨y −mn(x̃)|u⟩2Σn+1

λn(x, x̃)∥u∥2Σn+1
+ 1

. (67)

Then we need to show that:

I(x̃, x)
exp

(
− 1

2 ∥y −mn(x̃)∥2Σn+1

)
exp

(
− 1

2 ∥y −mn(x̃)∥2Σn

) =
exp

(
− 1

2A(x, x̃)
)

(λn(x, x̃)∥u∥2Σn+1
+ 1)1/2

≤ 1. (68)

Since (λn(x, x̃)∥u∥2Σn+1
+ 1)−1/2 ≤ 1 the last inequality needed is A(x, x̃) ≥ 0. Based on equation (30):

Σn+1(x̃|x)−1 − Σn(x̃)
−1 =

λn(x, x̃)

1− λn(x, x̃)∥u∥2Σn

Σn(x̃)
−1uuTΣn(x̃)

−1. (69)

Let us denote Bn = Σn(x̃)
−1uuTΣn(x̃)

−1 and ∥a∥2
B−1

n
= aTBna. This last notation is improper since Bn is not

invertible and its not a norm anymore since its not positive definite. It will be used for clarity purposes only. We have
that:

A(x, x̃) =
λn(x, x̃)

1− λn(x, x̃)∥u∥2Σn

∥y −mn(x̃)∥2B−1
n

+
λn(x, x̃) ⟨y −mn(x̃)|u⟩2Σn+1

λn(x, x̃)∥u∥2Σn+1
+ 1

(70)

and developing ⟨y −mn(x̃)|u⟩2Σn+1
:

⟨y −mn(x̃)|u⟩2Σn+1
= (y −mn(x̃))

TΣn+1(x̃|x)−1uuTΣn+1(x̃|x)−1(y −mn(x̃))

= (y −mn(x̃))
TBn+1(y −mn(x̃))

= ∥y −mn(x̃)∥2B−1
n+1

(71)

22



Sequential design for Bayesian inverse problems with surrogate modeling

which yields:

A(x, x̃) =
[
(1− λn(x, x̃)∥u∥2Σn

)∥y −mn(x̃)∥2B−1
n+1

+ (1 + λn(x, x̃)∥u∥2Σn+1
)∥y −mn(x̃)∥2B−1

n

]
× λn(x, x̃)

(1− λn(x, x̃)∥u∥2Σn+1
)(1 + λn(x, x̃)∥u∥2Σn

)
.

(72)

One can show that Bn =
(
σ2
m +Nkn(x̃, x̃)

)−2
uuT . Besides ∥u∥2Σn

= N
σ2
m+Nkn(x̃,x̃)

. Then, Bn = 1
N4 ∥u∥4Σn

uuT .
Using this relation:

A(x, x̃) =
λn(x, x̃)

[
(1− λn(x, x̃)∥u∥2Σn

)∥u∥4Σn+1
+ (1 + λn(x, x̃)∥u∥2Σn+1

)∥u∥4Σn

]
N4(1− λn(x, x̃)∥u∥2Σn

)(1 + λn(x, x̃)∥u∥2Σn+1
)

× (y −mn(x̃))
TuuT (y −mn(x̃)).

(73)

The matrix uuT is positive non-definite and thus (y −mn(x̃))
TuuT (y −mn(x̃)) ≥ 0. Besides we have shown

previously that λn(x, x̃)∥u∥2Σn
≤ 1 hence (1−λn(x, x̃)∥u∥2Σn

) ≥ 0 and also (1+λn(x, x̃)∥u∥2Σn+1
) ≥ 0. Let us focus

on the term in between the brackets, denoted B(x, x̃). Using the relation ∥u∥2Σn+1
= ∥u∥2Σn

(
1− λn(x, x̃)∥∥u∥2Σn

)−1
:

B(x, x̃) =
[
(1− λn(x, x̃)∥u∥2Σn

)∥u∥4Σn+1
+ (1 + λn(x, x̃)∥u∥2Σn+1

)∥u∥4Σn

]
=

∥u∥4Σn

1− λn(x, x̃)∥u∥2Σn

[
1 + 1− λn(x, x̃)∥u∥2Σn

+ λn(x, x̃)∥u∥2Σn

]
=

2∥u∥4Σn

1− λn(x, x̃)∥u∥2Σn

≥ 0.

(74)

Finally, since for all x̃ ∈ X , B(x, x̃) ≥ 0, then A(x, x̃) ≥ 0 and exp
(
− 1

2A(x, x̃)
)
≤ 1.

Then for all x̃ ∈ X :1− (1− λn(x, x̃)

kn(x̃, x̃)

)
|Σn(x̃|x)|1/2

|Σn+1(x̃)|1/2
I(x̃, x)

exp
(
− 1

2 ∥y −mn(x̃)∥2Σn+1

)
exp

(
− 1

2 ∥y −mn(x̃)∥2Σn

)
 ≥ 0

which is enough to conclude that Dn ≥ Fn(x) for any x ∈ X based on equation (64). D has the supermartingale
property.
Moreover in the previous inequality, equality occurs only when

(
1− λn(x,x̃)

kn(x̃,x̃)

)
= 1 which implies λn(x, x̃) = 0 and

thus kn(x, x̃) = 0. Or in the other hand, when kn(x, x̃) = 0, then immediately λn(x, x̃) = 0 and Σn+1(x̃|x) = Σn(x̃)
such that l(x, x̃) = 0. One can conclude from this, that l(x, x̃) = 0 if and only if kn(x, x̃) = 0 for x, x̃ ∈ X .

B Proof of proposition 2.2

Let x ∈ X . Consider first the total covariance matrix Ctot(x) = vs(x)1N + σ2
mIN . Its inverse is given by

Btot(x) =
1

σ2
m

IN − vs(x)

σ2
m(Nvs(x) + σ2

m)
1N . (75)

It is easy to verify that Ctot(x)Btot(x) = Btot(x)Ctot(x) = IN .
Similarly, its determinant is given by:

|Ctot(x)| = (σ2
m)N−1(σ2

m +Nvs(x)). (76)

Consider now the eigenvalues (λj)1≤j≤N of 1N such that λ1 = N and λj = 0 for j ≥ 2. We are interested in an
orthonormal basis of eigenvectors (ej)1≤j≤N where ej is associated to the eigenvalue λj for 1 ≤ j ≤ N . In particular,
if u = (1, ...., 1)T ∈ RN , then 1Nu = Nu and we have e1 = 1√

N
u.

On this basis, we have y =
N∑
j=1

cjej where cj = yTej for 1 ≤ j ≤ N by definition and fs(x) = fs(x)u =

√
Nfs(x)e1.
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Since 1Ny = c11Ne1 = Nc1e1 and 1Ny = Nyu = yN
√
Ne1 with y = 1

N

N∑
k=1

y(k) then c1 =
√
Ny and

y − fs(x) = (y − fs(x))u +
N∑
j=2

cjej . The posterior distribution can now be simplified by keeping only the term

depending on x.
First one can see that:

Ctot(x)
−1(y − fs(x)) = (y − fs(x))

(
1

σ2
m

IN − vs(x)

σ2
m(Nvs(x) + σ2

m)
1N

)
u+

1

σ2
m

N∑
j=2

cjej (77)

= (y − fs(x))

(
1

σ2
m

− Nvs(x)

σ2
m(Nvs(x) + σ2

m)

)
u+

1

σ2
m

N∑
j=2

cjej (78)

since 1Nej = 0 for j ≥ 2. Now, multiplying on the left by (y − fs(x))
T and using the orthogonality of the basis

vectors we have:

(y − fs(x))
TCtot(x)

−1(y − fs(x)) =
N(y − fs(x))

2

Nvs(x) + σ2
m

+
1

σ2
m

N∑
j=2

c2j . (79)

The right term does not depend on x and can be absorbed in the multiplicative constant. Finally, using equation (76) we
can conclude that:

p(x|y) ∝ |Ctot(x)|−1/2 exp

[
−1

2

(
(y − fs(x))

TCtot(x)
−1(y − fs(x))

)]
∝ (σ2

m +Nvs(x))
−1/2 exp

[
−1

2

(
(y − fs(x))

2

vs(x) +
σ2
m

N

)]
.

C Extension to multi-output GP surrogates

The results presented in this paper extend naturally to multi-output Gaussian processes though for notation concision
only the scalar GP case is developed. In this appendix, the formalism is extended to the multi-output case.
Let us consider fs : X × Ω −→ RD where X ⊂ Rp is compact. With the same notations as in section 4, the Gaussian
measure conditioned by Fn is denoted P f

n . The associated mean and covariance functions are mn : X −→ RD and
kn : X × X −→ MD(R) where MD(R) is the set of squared real-valued matrices of size D × D. Furthermore, for
x̃ ∈ X and for all n ≥ 0, kn(x̃, x̃) ∈ S+

D(R) where S+
D(R) is the set of symmetric positive semi-definite matrices.

When conditioning by a input-output pair (x, z), the mean and covariance functions are updated as follows:

mn+1(x̃|x, z) = mn(x̃) + kn(x, x̃)kn(x, x)
−1(z −mn(x)) (80)

kn+1(x̃1, x̃2|x) = kn(x̃1, x̃2)− kn(x̃1, x)kn(x, x)
−1k(x, x̃2). (81)

Let us consider an inverse problem with observations y = (y(k))1≤k≤N where y(k) ∈ RD for 1 ≤ k ≤ N . The
observations are noisy such that:

y(k) = f(xth) + ε(k) where ε(k) ∼ N (0,Cm) . (82)

Let us introduce the total covariance Σn(x̃) for x̃ ∈ X .

Σn(x̃) = kn(x̃, x̃)⊗ 1N +Cm ⊗ IN ∈ RDN×DN (83)

where ⊗ is the Kronecker product for matrices.
The global likelihood is the following:

Ln(y|x̃) = ((2π)DN |Σn(x̃)|)−1/2 exp

[
−1

2
∥y −mn(x̃)∥2Σn

]
(84)

where the bold notation denotes the flattened vectors:

y −mn(x̃) =

 y(1) −mn(x̃)
...

y(N) −mn(x̃)

 ∈ RDN . (85)

24



Sequential design for Bayesian inverse problems with surrogate modeling

This likelihood can be simplified in the same manner as in equation (8). The proof is not detailed here but the simplified
posterior is given by:

pn(x|y) ∝ p(x̃)× |Cm +Nkn(x, x)|−1/2

× exp

[
−1

2

(
(y −mn(x))

T

(
1

N
Cm + kn(x, x)

)−1

(y −mn(x))

)]
(86)

where y = 1
N

N∑
k=1

y(k) ∈ RD.

In this multi-output framework, the metric of uncertainty H : M −→ R+ is slightly different:

H(ν) =

∫
X
|kν(x̃, x̃)|pν(x̃|y)dx̃. (87)

The IP-SUR strategy consists in minimizing Jn(x) defined for x ∈ X by:

Jn(x) = Ez(x) [Hn+1(x, z)] =

∫
RD

∫
X
|kn+1(x̃, x̃|x)|pn+1(x̃|y, x, z)dx̃ ϕn(z)dz (88)

where ϕn(z) is the density of the distribution N (mn(x), kn(x, x)).
Consider a Markov chain (Xl)1≤l≤L whose invariant distribution is the posterior pn(x̃|y). Let us introduce the
normalization constant Cn defined by:

Cn =

∫
X
p(x̃)Ln(y|x̃)dx̃. (89)

The new design point in the IP-SUR sequential design strategy is obtained by:

xn+1 = argminx∈X J̃n(x) (90)

J̃n(x) =
Cn+1

Cn
Jn(x) =

∫
X
pn(x̃|y)h(x̃, x)I(x̃, x)dx̃. (91)

The Markov chain (Xl)1≤l≤L is ergodic and its invariant distribution is the posterior distribution pn(x̃|y). Then, J̃n(x)
can be evaluated for all x ∈ X by:

J̃n(x) ≃
1

L

L∑
l=1

h(Xl, x)I(Xl, x). (92)

where:

h(x̃, x) = |kn+1(x̃, x̃)|
|Σn(x̃)|1/2

|Σn+1(x̃|x)|1/2
exp

[
−1

2

(
∥y −mn(x̃)∥2Σn+1

− ∥y −mn(x̃)∥2Σn

)]
(93)

I(x̃, x) = (|kn(x, x)||A|)−1/2 exp

(
1

2
BTA−1B

)
(94)

and with:
A = kn(x, x)

−1 + kn(x, x)
−1kn(x̃, x)

TΣn+1(x̃|x)−1kn(x̃, x)kn(x, x)
−1 ∈ RD×D (95)

B = kn(x, x)
−1kn(x̃, x)

TΣn+1(x̃|x)−1(y −mn(x̃)) ∈ RD (96)

kn(x̃, x) =

kn(x̃, x)
...

kn(x̃, x)

 ∈ RDN×D. (97)

D Point model approximation in neutron noise analysis

Neutron noise analysis describes a set of techniques which study the temporal fluctuations of neutron detector responses.
For this particular work, the goal is to identify a fissile nuclear material based on measurements of temporal correlations
between neutrons created by induced fissions inside the unknown material. From such noisy observations, an inverse
problem is solved to identify the unknown material. In its simplest form, the link between material and observations is
given by the so-called point model approximation, which is detailed hereafter.
The material is identified by a set of parameters x. In the simplest formulation of the point model, four parameters are
considered such that x ∈ X ⊂ R4.

25



Sequential design for Bayesian inverse problems with surrogate modeling

• 0 < kp < 1 is the prompt multiplication factor.
• εF is the ratio of detected neutrons over the number of induced fissions in the material.
• S is the source intensity in neutrons per second.
• xs is the ratio of source neutrons produced by spontaneous fissions, over the total number of source neutrons.

The source neutrons are either created by nuclear reactions modeled by Poisson point processes, or by spontaneous
fissions which are modeled by compound Poisson processes.
The statistical model includes three different observations y ∈ R3, which are recorded for each numerical simulations
(or practical experiments).

• R is the average detection rate of neutrons in the detector.
• Y∞ is the second order asymptotic Feynman moment.
• X∞ is the third order asymptotic Feynman moment.

The interpretation of the two quantities Y∞ and X∞ is not detailed here. To simplify, they can be viewed as the binomial
moments of order 2 and 3 of the number of detected neutrons in some given time window of size T , where T is taken to
be much larger than the average lifetime of a fission chain. For more details, the authors refer to (Pázsit and Pál, 2007;
Furuhashi and Izumi, 1968) and (Feynman et al., 1956).
In the point model framework, strong assumptions are made in order to provide an analytical link between inputs x and
outputs y. The material is assumed uniform, homogeneous and infinite. All the neutrons have same energy, and the only
nuclear reactions considered are neutron captures and fissions.
In this context, analytical relations can be derived. The reactivity ρ = k−1

k < 0 is introduced for concision.

R = − εFSνs
ρν(νs + xs − νsxs)

(98)

Y∞ =
εFD2

ρ2

(
1− xsρ

νsD2s

νD2

)
(99)

X∞ = 3

(
εFD2

ρ2

)2(
1− xsρ

νsD2s

νD2

)
− ε2FD3

ρ3

(
1− xsρ

νs
2D3s

ν2D3

)
. (100)

In these relations, ν, D2, D3 are nuclear data quantifying the multiplicity distribution of the neutrons created by induced
fissions. Similarly, νs, D2s, D3s describe the multiplicity of the neutrons created by spontaneous fissions. These
quantities are considered known values in this work.
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