
Bayesian Inverse Problem and Uncertainty Quantification in the Joint Analysis
of Neutron and Gamma Corrrelations

Paul Lartaud 1, 2,∗ , Philippe Humbert1, Josselin Garnier2

1 CEA, DAM, DIF, Arpajon, France; 2 Centre de Mathématiques Appliquées, Ecole Polytechnique, Insti-
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ABSTRACT

Neutron noise methods in zero power systems have been widely used to identify fissile material
in criticality safety. With recent focus on scintillation detectors able to detect both neutrons and 
gammas, the inclusion of gamma correlations into the framework of neutron noise methods can 
provide more information on the unknown material. In this paper, the goal is to solve an inverse 
problem where both neutron and gamma correlation observations are used to identify unknown 
parameters of a fissile m aterial. Because of the large measurement noise in the observations, the 
uncertainty quantification is crucial in this a pplication. Hence, the inverse problem is solved by a 
Bayesian approach, in which a surrogate model is used to overcome the computational burden of 
Monte-Carlo simulations. The newly added gamma correlations can be included in different ways
to obtain the posterior distribution of the unknown parameters. These methods are investigated and 
applied to various configurations of the SILENE reactor facility.
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1. INTRODUCTION

Measurements of stochastic noise, whether from neutrons or gamma detections, in a nuclear fissile material 
can provide information on the kinetics of the medium. Such measurements are said to be passive when they 
do not interfere with the medium itself. Passive measurements are widely used in nuclear safeguards and 
non-proliferation [1]. Identification of fissile matter based on neutron noise analysis was first introduced by 
Feynman [2]. Since then, numerous experiments have been conducted to replicate and improve these methods 
[3, 4]. Most of these methods are based on the study of neutron correlations, yet with the development of 
new detection systems able to provide multiplicity counting for both neutrons and gammas [5], the joint 
study of neutron and gamma correlations could allow for more robust inference. The theoretical study of 
gamma correlations has been explored in [6], though its applications remain scarcer than neutron-based 
methods. On top of this, both neutron and gamma noise analysis generally suffer from a lack of uncertainty 
quantification, though some recent developments in that direction have arisen [7]. In this paper, a general 
methodology of uncertainty quantification for the joint analysis of neutron and gamma noise in zero power 
systems is presented. This method is applied to a specific example extracted from a series of experiments 
conducted on the SILENE irradiation facility.
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2. INVERSE PROBLEMS AND GAUSSIAN PROCESS SURROGATE MODELS

In the context of nuclear safeguards, one would like to identify an unknown material based on observations
of neutron and/or gamma correlations. The goal is thus to solve an inverse problem. Let us consider
𝑁𝑁 independent observations (numerical or experimental) denoted y = (𝑦𝑦 (𝑘𝑘 ) )1≤𝑘𝑘≤𝑁𝑁 . Our goal is to infer
characteristics of the material. The direct model 𝑓𝑓 is the function that maps the inputs 𝑥𝑥 ∈ X ⊂ R𝑝𝑝 (the
material) to the observations 𝑦𝑦 ∈ R𝐷𝐷 .

𝑓𝑓 : X → R𝐷𝐷
𝑥𝑥 → 𝑦𝑦

(1)

In this work, the true direct model 𝑓𝑓 is a complicated and inaccessible function given by the transport problem
of the neutrons and gammas in the multiplying medium. In practice, it can be approximated by analytic
models given some strong assumptions, like in the point model framework, or it can be obtained with the
help of Monte-Carlo codes like MCNP which are considered state-of-the-art but are very computationally
expensive. A compromise between the two approaches can be made in the form of surrogate models, as will
be discussed in section 2.2.
Since the observations are noisy due to the accidental temporal correlations, a noise term is added to the
statistical model.

𝑦𝑦 (𝑘𝑘 ) = 𝑓𝑓 (𝑥𝑥) + 𝜀𝜀 (𝑘𝑘 ) with 𝜀𝜀 (𝑘𝑘 ) ∼ N (0,C𝑚𝑚) (2)
The noise is assumed Gaussian, with zero-mean and a covariance C𝑚𝑚 that can be estimated either by the
standard covariance estimator or by a bootstrap method. For this work, both neutron and gamma correlation
observations are considered. The observations of interest are the count rates as well as the second and third
order Feynman moments, for the neutron and gamma correlations. The mixed neutron/gamma moments are
not included in our method.

2.1. Bayesian Inverse Problem Resolution

In order to quantify the uncertainties associated with noisy observations, the most common approach is to
solve the inverse problem in a Bayesian framework. Let 𝑝𝑝(𝑥𝑥) be the prior distribution over the inputs. In
this work, the prior is taken to be non-informative, and is chosen uniform over a fixed domain R of the input
space X ⊂ R𝑝𝑝. The choice of the domain R will vary depending on the problem itself.
Assuming a Gaussian noise as in equation (2), the likelihood 𝐿𝐿 (y|𝑥𝑥), defined as the probability of the
observations y given fixed inputs 𝑥𝑥 is tractable.

𝐿𝐿 (y|𝑥𝑥) ∝ exp


−1

2

𝑁𝑁∑︁
𝑘𝑘=1

(𝑦𝑦 (𝑘𝑘 ) − 𝑓𝑓 (𝑥𝑥))𝑇𝑇C−1
𝑚𝑚 (𝑦𝑦 (𝑘𝑘 ) − 𝑓𝑓 (𝑥𝑥))


(3)

The goal of the Bayesian approach is to evaluate the posterior distribution 𝑝𝑝(𝑥𝑥 |y) which is the probability
distribution of the inputs given the observations and which is given by Bayes’ theorem.

𝑝𝑝(𝑥𝑥 |y) ∝ 𝑝𝑝(𝑥𝑥)𝐿𝐿 (y|𝑥𝑥) (4)

The posterior distribution models the uncertainties introduced by the noise on the observations when
evaluating the inputs in the inverse problem. This distribution is not always easy to sample directly
especially if the dimension 𝑝𝑝 is large. The sampling of the posterior distribution is based on Monte-Carlo
Markov chain methods (MCMC) in this paper. MCMC methods require a large number of calls to the
direct model (up to a few millions). For that reason, Monte-Carlo solvers cannot be used as a direct model.
On the other hand, an approximate model such as the point model introduces a bias due to its inherent
approximations. To overcome these difficulties, a surrogate model is built with Gaussian process regression.
The surrogate model is based on Monte-Carlo solvers data and should provide satisfying predictions while
remaining computationally cheap.
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2.2. Surrogate Modeling and Inverse Problem

For now, let us consider a Gaussian process surrogate model 𝑓𝑓𝑠𝑠 such that for a given input 𝑥𝑥 ∈ X, the
surrogate returns a Gaussian distribution 𝑓𝑓𝑠𝑠 (𝑥𝑥) ∼ N

(
𝑓𝑓𝑠𝑠 (𝑥𝑥),C𝑠𝑠 (𝑥𝑥)

)
with mean 𝑓𝑓𝑠𝑠 (𝑥𝑥) and covariance C𝑠𝑠 (𝑥𝑥).

The theory on Gaussian process surrogate modeling is detailed in [8]. The predictive covariance C𝑠𝑠 (𝑥𝑥)
quantifies the model error at input point 𝑥𝑥. The more uncertain the model is, the greater the variance. In all
this work, the assumption of a Gaussian distribution on the output is made.
In the Bayesian resolution of the inverse problem, the predictive covariance can be included in the likelihood.
Let us now assume that the statistical model is written as 𝑦𝑦 = 𝑓𝑓𝑠𝑠 (𝑥𝑥) + 𝜂𝜂(𝑥𝑥) + 𝜀𝜀 where 𝜂𝜂(𝑥𝑥) ∼ N (0,C𝑠𝑠 (𝑥𝑥))
represents the model error and 𝜀𝜀 ∼ N (0,C𝑚𝑚) is the observation error [9].
The observations are not independent anymore since they are connected by the same model error 𝜂𝜂(𝑥𝑥) such
that the new likelihood is given by :

𝐿𝐿 (y|𝑥𝑥) = (2𝜋𝜋)−𝐷𝐷𝐷𝐷/2 |Ctot(𝑥𝑥) |−1/2 exp
(
−1

2

(
y − fs(𝑥𝑥)

)𝑇𝑇
Ctot(𝑥𝑥)−1

(
y − fs(𝑥𝑥)

))
(5)

where Ctot(𝑥𝑥) =
���
�

C𝑠𝑠 (𝑥𝑥) + C𝑚𝑚 . . . C𝑠𝑠 (𝑥𝑥)
...

. . .
...

C𝑠𝑠 (𝑥𝑥) . . . C𝑠𝑠 (𝑥𝑥) + C𝑚𝑚

���
�

and fs(𝑥𝑥) =
(
𝑓𝑓𝑠𝑠 (𝑥𝑥), ..., 𝑓𝑓𝑠𝑠 (𝑥𝑥)

)𝑇𝑇
∈ R𝐷𝐷𝐷𝐷 . The new

likelihood includes both the observation noise and the error of the surrogate model. This new posterior
distribution 𝑝𝑝(𝑥𝑥 |y) can then be obtained with MCMC sampling. It encompasses both the error of the
surrogate model and the uncertainties introduced by the observation noise.

3. BUILDING THE SURROGATES

3.1. SILENE Configurations

The SILENE reactor was a liquid fueled excursion test reactor. It was designed to study criticality accidents
in a liquid fissile solution of uranyl nitrate with 93% enrichment in 235U. The core is cylindrical with an
internal axial channel used for neutron counting. The reactor was designed to operate in different modes. It
was mostly used in pulse mode, in which the internal control rod is rapidly withdrawn to create a high power
excursion peak. The internal rod can also be removed more slowly to simulate a criticality accident. Finally,
it can be operated in steady state in which the reactor is kept at a stable power level. We are interested in
the latter configuration. In the test cases discussed below, various configurations of the SILENE core are
investigated. Between each configurations, only the height of fissile solution is changed, from 5 to 30 cm.
For this paper, the configurations with fissile height of 15 cm, 20 cm and 25 cm are investigated.
We have access to the data from a series of measurements in the form of time list files. For a given
configuration, these files contain all the instants of detections of neutrons in the BF3 detector located at the
center of the SILENE core. From these data, the Feynman moments and the count rate can be extracted for
various configurations. However, we do not have access to experimental gamma measurements. Hence, the
gamma observations are obtained with Monte-Carlo simulations in MCNP6 [10] with a simplified model of
the SILENE core. We consider the cylindrical core with a given height of fissile solution, and a BF3 detector
at its center. The SILENE core is surrounded by a concrete layer with a thickness of 12 cm representing the
walls of the room to include reflections. The uranyl nitrate has 93% enrichment in 235U. The inner diameter
of the BF3 counter tube is 4.9 cm. The inner diameter of the fissile region is 36 cm. The source considered
is a mix of an (𝛼𝛼, 𝛼𝛼) and a spontaneous fission source, uniformly distributed in the fissile volume. It is
modeled by a compound Poisson process and described by two parameters: 𝑆𝑆 is the source intensity (in
neutrons.s−1) and 𝑥𝑥𝑠𝑠 is the fraction of source neutrons emitted by spontaneous fissions. The multiplicity
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data of both induced and spontaneous fissions are considered known.

3.2. Dataset Description

The training dataset for our surrogate models should include cases close to the experimental configurations
tested. The dataset produced contains 378 instances. The various training cases are obtained by changing
randomly the compositions, geometries and densities of material of a reference SILENE experiment. These
changes aim to cover a wide range of potential experiments. The dataset used to train our surrogate models
is built upon Monte-Carlo simulations with MCNP6.
To study neutron correlations, we consider the asymptotic second and third order Feynman moments in-
troduced in [2] and [11], as well as the neutron count rate 𝑅𝑅. The second and third asymptotic Feynman
moments are denoted 𝑌𝑌∞ and 𝑋𝑋∞ respectively. We proceed similarly for the study of gamma correlations.
The asymptotic Feynman moments for the gamma correlations are denoted 𝑌𝑌

(𝛾𝛾)
∞ and 𝑋𝑋

(𝛾𝛾)
∞ respectively and

the count rate is 𝑅𝑅 (𝛾𝛾) . For more details on the Feynman moments in neutron noise analysis, the authors
refer to [6, 12]. These six quantities are the outputs of interest in our dataset. The inputs of interest and the
estimation of the Feynman moments are detailed below.

3.2.1. Inputs estimation

The inputs of our model are based on the formulation of the Feynman moments and count rate in the point
model framework, upon which are added three inputs to better describe the full transport problem [9]. These
models are still much simpler than a real transport problem but can provide more information than the point
model.
The inputs for the neutron model are the following:

• 𝑘𝑘 𝑝𝑝 is the prompt multiplication factor.
• 𝜀𝜀𝐹𝐹 is the Feynman detector efficiency, defined as the the ratio of counts over induced fissions.
• 𝑆𝑆 is the source intensity is neutrons.s−1.
• 𝑥𝑥𝑠𝑠 is the fraction of source neutrons produced by spontaneous fissions.
• 𝜀𝜀𝐴𝐴 is the ratio of parasitic absorptions over induced fissions.
• 𝛷𝛷 is the ratio of the thermal over fast neutron flux in the vicinity of the fissile region.
• 𝐽𝐽 is the ratio of neutron currents in the outermost concrete layer of the geometry. It describes the

reflection on the walls of the room.

The prompt multiplication factor is obtained by an eigenvalue calculation with 500 active cycles and 50
inactive cycles of 2 × 105 neutrons each. The standard deviation is in the order of 10 pcm. The delayed
neutrons are not taken into account since we want to evaluate the prompt multiplication factor.
The source intensity 𝑆𝑆 is set manually. Indeed, since MCNP6 only records the time between the birth of
the neutrons and their detection in the time list file, the instants of the source events are actually sampled in
the post processing phase. The source events are assumed to follow a Poisson process with a given source
intensity 𝑆𝑆. The multiplicity data for the spontaneous fissions are assumed known.
Similarly, the parameter 𝑥𝑥𝑠𝑠 is set manually directly in the input file in the source description. It is changed
randomly for each test case.
Finally, all the other inputs are obtained by tally measurements in MCNP. For 𝛷𝛷, the neutron flux tally
measurements are taken below the fissile region in a small air region. For 𝜀𝜀𝐴𝐴, the parasitic absorptions
considered are the ones in the fissile region which is the main neutron absorber.
Now for the study of gamma correlations, the model inputs are not quite the same. There are only five distinct
inputs considered this time which are the prompt multiplication 𝑘𝑘 𝑝𝑝, the source parameters 𝑆𝑆 and 𝑥𝑥𝑠𝑠, and two
additional quantities describing gamma multiplication and detection and obtained by tally estimators.
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• 𝑀𝑀𝛾𝛾 is the average number of gamma emitted per source neutrons.
• 𝜀𝜀𝛾𝛾 is the fraction of detected gammas over the total number of gamma created.

3.2.2. Feynman moments

To study the neutron correlations, the observations considered are the average count rate and the second
and third order asymptotic Feynman moments. The Feynman moments can be estimated with two methods.
Sequential binning is a rather standard approach based on the central moments estimators. Filtered binning
is another method which leverages the knowledge of the neutron history number in a numerical simulation
to filter out the accidental noise. This method is used only for the training data to reduce the noise in the
dataset. More details on these methods are presented in [13].
For the study of gamma correlations, the observations considered are the average gamma count rate 𝑅𝑅 (𝛾𝛾) and
the second and third order asymptotic gamma Feynman moments 𝑌𝑌 (𝛾𝛾)

∞ and 𝑋𝑋
(𝛾𝛾)
∞ . These gamma Feynman

moments are defined in the same manner as for neutron correlations. They are also evaluated with the same
methods: filtered triggered binning is used for the training data and sequential binning is used for the inverse
problem observations.

3.3. Posterior Distribution Sampling

Once the surrogate models are available, the posterior distribution can be sampled by MCMC methods with
the likelihood given in equation (5). In this work, the sampling is performed with Hamiltonian Monte-Carlo,
with the No U-Turn Sampler extension (HMC-NUTS) [14]. HMC-NUTS is implemented in Python with the
PyMC3 package [15]. The posterior distributions are sampled with 2×104 iterations in HMC. Two different
approaches are tested to obtain a posterior distribution including both neutron and gamma observations.

3.3.1. Sequential approach

Our objective is to extract information from both neutron and gamma correlations. The Bayesian framework
used in this work is readily suited for a sequential approach of this problem. Indeed, one can easily start
from a non-informative prior 𝑝𝑝(𝑥𝑥) and solve the inverse problem for neutron correlations to obtain a first
posterior distribution 𝑝𝑝 (𝑛𝑛) (𝑥𝑥 |y). Then, this posterior distribution can be used as a prior in a second inverse
problem, with the gamma correlation observations, to obtain a final posterior 𝑝𝑝 (𝑛𝑛𝑛𝛾𝛾) (𝑥𝑥 |y). One could also
proceed the other way and sample a first posterior 𝑝𝑝 (𝛾𝛾) (𝑥𝑥 |y) using the gamma correlations and then solve
the neutron inverse problem to obtain a posterior 𝑝𝑝 (𝛾𝛾𝑛𝑛𝑛) (𝑥𝑥 |y). The final distribution is the same since
𝑝𝑝 (𝛾𝛾𝑛𝑛𝑛) (𝑥𝑥 |y) ∝ 𝑝𝑝 (𝛾𝛾) (𝑥𝑥 |y) 𝐿𝐿 (𝑛𝑛) (y|𝑥𝑥) ∝ 𝑝𝑝(𝑥𝑥) 𝐿𝐿 (𝛾𝛾) (y|𝑥𝑥) 𝐿𝐿 (𝑛𝑛) (y|𝑥𝑥) and 𝑝𝑝 (𝑛𝑛𝑛𝛾𝛾) (𝑥𝑥 |y) ∝ 𝑝𝑝 (𝑛𝑛) (𝑥𝑥 |y) 𝐿𝐿 (𝛾𝛾) (y|𝑥𝑥) ∝
𝑝𝑝(𝑥𝑥) 𝐿𝐿 (𝑛𝑛) (y|𝑥𝑥) 𝐿𝐿 (𝛾𝛾) (y|𝑥𝑥) where 𝐿𝐿 (𝑛𝑛) (y|𝑥𝑥) and 𝐿𝐿 (𝛾𝛾) (y|𝑥𝑥) are respectively the likelihoods for the neutron
and gamma inverse problems. This approach requires two distinct surrogate models for the neutron and
gamma inverse problems. However, it leaves out some information since the correlations between neutron
and gamma observations are not used.

3.3.2. Joint approach

A more rigorous approach would merge the neutron and gamma observations into a unique surrogate model
able to predict both measurements, which would yield a more informative posterior 𝑝𝑝 (joint) (𝑥𝑥 |y). The higher
input and output dimensions required means that this joint surrogate model (JSM) is both harder to train
and more costly to call. To overcome this issue, the sparse GP approximation described in [16] is used to
reduce both training time and inference time. This approximate model is not as good as exact GP surrogate
model but the gain in information obtained by the joint treatment of neutrons and gammas is expected to
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Table I. NMAE and NRMSE for the trained surrogate models for (𝑅𝑅𝑅𝑅𝑅∞𝑅 𝑋𝑋∞) predictions

NMAE NRMSE
NSM [0.008, 0.027, 0.083] [0.011, 0.038, 0.139]

JSM Neutron [0.012, 0.023, 0.089] [0.019, 0.041, 0.262]
GSM [0.003, 0.015, 0.044] [0.004, 0.024, 0.100]

JSM Gamma [0.017, 0.019, 0.019] [0.034, 0.042, 0.052]

counteract this approximation.

3.4. Training Performance

Now that the dataset is available, the surrogate models can be trained. Three different models are considered.

• A neutron surrogate model (NSM) which takes (𝑘𝑘 𝑝𝑝𝑅 𝜀𝜀𝐹𝐹 𝑅 𝑆𝑆𝑅 𝑆𝑆𝑠𝑠𝑅 𝜀𝜀𝐴𝐴𝑅𝛷𝛷𝑅 𝛷𝛷) as inputs and provides mean
and covariance predictions for (𝑅𝑅𝑅𝑅𝑅∞𝑅 𝑋𝑋∞).

• A gamma surrogate model (GSM) which takes (𝑘𝑘 𝑝𝑝𝑅 𝑀𝑀𝛾𝛾 𝑅 𝜀𝜀𝛾𝛾 𝑅 𝑆𝑆𝑅 𝑆𝑆𝑠𝑠) as inputs and provides mean and
covariance predictions for

(
𝑅𝑅 (𝛾𝛾) 𝑅 𝑅𝑅 (𝛾𝛾)

∞ 𝑅 𝑋𝑋
(𝛾𝛾)
∞

)
.

• A joint surrogate model (JSM) which takes (𝑘𝑘 𝑝𝑝𝑅 𝑆𝑆𝑅 𝑆𝑆𝑠𝑠𝑅 𝜀𝜀𝐴𝐴𝑅𝛷𝛷𝑅 𝛷𝛷𝑅 𝑀𝑀𝛾𝛾 𝑅 𝜀𝜀𝛾𝛾 𝑅 ) as inputs and provides mean
and covariance predictions for

(
𝑅𝑅𝑅𝑅𝑅∞𝑅 𝑋𝑋∞𝑅 𝑅𝑅 (𝛾𝛾) 𝑅 𝑅𝑅 (𝛾𝛾)

∞ 𝑅 𝑋𝑋
(𝛾𝛾)
∞

)
.

The dataset is split into a training set (80%) and a validation set (20%) used to estimate performance metrics.
To evaluate the performance, we need to consider two performance criteria. The predictive mean of the
surrogate model should be close to the real MCNP outputs, and the predictive covariance should provide
reliable credibility regions.
To measure the performance of the predictive mean, we consider standard metrics such as the Normalized
Mean Absolute Error (NMAE) and the Normalised Root Mean Squared Error (NRMSE). For the credibility
regions, we consider the coverage probabilities. In one dimension, the coverage probability for a confidence
level 𝛽𝛽 is the fraction of true outputs that falls within the predicted credible interval of confidence level 𝛽𝛽.
In higher dimensions, the coverage probabilities can be generalized by looking at the squared Mahalanobis
distance 𝐷𝐷𝑀𝑀 ( 𝑓𝑓𝑠𝑠 (𝑆𝑆)𝑅 𝑦𝑦)2 between the prediction 𝑓𝑓𝑠𝑠 (𝑆𝑆) ∼ N

(
𝑓𝑓𝑠𝑠 (𝑆𝑆)𝑅C𝑠𝑠 (𝑆𝑆)

)
and the true output 𝑦𝑦.

𝐷𝐷𝑀𝑀 ( 𝑓𝑓𝑠𝑠 (𝑆𝑆)𝑅 𝑦𝑦)2 = ( 𝑓𝑓𝑠𝑠 (𝑆𝑆) − 𝑦𝑦)𝑇𝑇C𝑠𝑠 (𝑆𝑆)−1( 𝑓𝑓𝑠𝑠 (𝑆𝑆) − 𝑦𝑦) (6)

The squared Mahalanobis distance follows a 𝜒𝜒2 distribution with 𝐷𝐷 degrees of freedom, where 𝐷𝐷 is the
output dimension. The credibility region 𝐼𝐼𝛽𝛽 of confidence level 𝛽𝛽 can thus be defined such as:

𝐼𝐼𝛽𝛽 =
{
𝑆𝑆 ∈ X|𝐷𝐷𝑀𝑀 ( 𝑓𝑓𝑠𝑠 (𝑆𝑆)𝑅 𝑦𝑦)2 ≤ 𝑞𝑞𝛽𝛽

}
(7)

with 𝑞𝑞𝛽𝛽 the quantile of level 𝛽𝛽 of the 𝜒𝜒2 distribution with 𝐷𝐷 levels of freedom. The NMAE and NRMSE
metrics for the different surrogate models and for each predicted outputs are presented in Table I. The lowest
errors are highlighted in bold. Overall, the joint surrogate model often underperforms slightly because it
tries to provide more information in the outputs while having the same information input. This is especially
noticeable for the count rates predictions since they are the least noisy observations.

The coverage probabilities are plotted in Figure 1. All the models perform reasonably well, even though they
tend to overestimate the size of the credible regions. Better coverage probabilities could likely be obtained
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Figure 1. Coverage probabilities for all the surrogate models

with a larger dataset. Yet in this paper we focus on the feasibility of the joint study of neutron and gamma
correlations.

4. APPLICATION TO SILENE

4.1. Prompt Reactivity Constant

The prompt reactivity constant is obtained by Rossi alpha measurements. This is required to choose a
well-suited time width 𝑇𝑇 for the Feynman moments 𝑌𝑌 (𝑇𝑇) and 𝑋𝑋 (𝑇𝑇). The Rossi curves are displayed in
Figure 2. The curves are exponentially decreasing until they reach a plateau which correspond to the point
where all the detected correlations are accidental correlations since the fission chains have a limited lifetime
in a subcritical medium.

Figure 2. Rossi curves for the various SILENE configurations

For the various configurations, the 𝛼𝛼 are fitted from the Rossi-𝛼𝛼 expression [17] and presented in Table II.
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Table II. Prompt decay constants and multiplication for the different configurations

Fissile height (cm) 15 20 25
𝛼𝛼 (ms−1) -0.43 -0.72 -1.46

𝑘𝑘 𝑝𝑝 (MCNP) 0.718 0.833 0.906

4.2. Neutron and Gamma Observations

The neutron observations are extracted from experimental time list files obtained during a measuring cam-
paign [18]. For the gamma observations, the SILENE configurations are modeled in MCNP6 and the gamma
Feynman moments are evaluated with sequential binning. Though we have access to the history numbers,
sequential binning is used since the goal is to reproduce real-world observations.
The second and third Feynman moments for neutron detections are plotted in Figure 3 for the various
configurations. The asymptotic time is chosen to be 𝑇𝑇∞ = 10

𝛼𝛼
with 𝛼𝛼 estimated in Table II, to guarantee the

asymptotic values are reached.

Figure 3. Second (left) and third (right) order Feynman moment for the neutron correlations

4.3. Posterior Distributions

For nuclear safeguards and criticality safety, the main parameters of interest in our study are the source term
𝑆𝑆 and the multiplication 𝑘𝑘 𝑝𝑝. Because the sampled posterior distributions lie in multi-dimensional space,
we restrict the visualization to the marginal distributions, projected on the 2D space (𝑘𝑘 𝑝𝑝, 𝑆𝑆). The marginal
distributions obtained for the joint and sequential approach are presented in Figure 4. On the left panel of
this plot, we also displayed the marginal obtained from the sole neutron observations. The theoretical values
of 𝑘𝑘 𝑝𝑝 and 𝑆𝑆 are also displayed.
The added information from the gamma correlations is clearly visible when comparing the distribution
𝑝𝑝 (𝑛𝑛) (𝑥𝑥 |y) to 𝑝𝑝 (𝑛𝑛𝑛𝑛𝑛) (𝑥𝑥 |y). For the joint approach however, the distribution is broader. This may be linked to
the surrogate model which is more difficult to train. In table I, one can see that the predictive performance
of JSM is lower especially for the count rates 𝑅𝑅 and 𝑅𝑅 (𝑛𝑛) . These two observations have very low noise and
thus a large uncertainty in their predictions is more impactful than for 𝑋𝑋∞ for example. A larger dataset may
be required to improve the JSM model and make it more competitive.
To compare the joint and sequential approach, we also looked at the entropy of the marginal distributions.
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Table III. Entropy of the marginal distributions for the various configurations

𝑝𝑝 (𝑛𝑛) (𝑥𝑥 |y) 𝑝𝑝 (𝑛𝑛𝑛𝑛𝑛) (𝑥𝑥 |y) 𝑝𝑝 ( 𝑗𝑗𝑗𝑗𝑗𝑗𝑛𝑛𝑗𝑗 ) (𝑥𝑥 |y)
15 cm 7.92 7.71 8.67
20 cm 8.68 8.05 9.29
25 cm 8.08 7.38 8.97

The entropy is a measure of the information brought by the distribution, the more spread out the distribution,
the higher the entropy. The entropy of each distribution is shown in Table III.

Figure 4. Marginal distributions of 𝑝𝑝 (𝑛𝑛) (𝑥𝑥 |y) (left), 𝑝𝑝 (𝑛𝑛𝑛𝑛𝑛) (𝑥𝑥 |y)(center) and 𝑝𝑝 ( 𝑗𝑗𝑗𝑗𝑗𝑗𝑛𝑛𝑗𝑗 ) (𝑥𝑥 |y) (right)

The values obtained confirm the visual impression of Figure 4. The gamma correlations largely reduce the
uncertainties in the sequential approach while the joint approach is less effective for now.

5. CONCLUSION

In this paper, the joint study of the neutron and gamma correlations is used in a Bayesian inverse problem
with a Gaussian process surrogate model. The use of gamma correlation measurements is able to reduce
the spread of the posterior distribution, or in other words to reduce the uncertainties in the fissile matter
identification. A fully joint approach including the correlations between neutron and gamma moments is
also theoretically feasible but has yielded wider distributions in this work though this could be attributed
to the lack of training data for the high-dimensional joint surrogate model. In a future work, one could
also consider to include the mixed neutron/gamma moments in a joint or sequential approach, which could
further reduce the uncertainties in the final posterior.
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